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Section 6.1
Exercise 1 In this exercise, you are asked to verify that

F(x) = 1

3
x3+ 2x2− x + 2

is an antiderivative of
f (x) = x2+ 4x − 1.

This could never be anexam question, since it is almost impossible to leave a written record that explains
how these instructions were followed. However, it is useful as ahomework exercise, since it reminds you
that it is possible to check answers. Theverification consists of findingF ′(x)by differentiating term-by-term
andnoticing that the result isf(x).

I noticed — did you?

Exercise 8 Here we are to first verify that

G(x) = ex

is an antiderivative of
g(x) = ex.

Again, we know how to differentiate to findG, and wenotice that the result is equal to the giveng.
Then, we are asked tofind all antiderivatives of g. This section told us that this means that we should

add anarbitrary constant to G to obtain something that wewrite as

ex + C.

This seems too easy. Of course,it is, but some problems will give an additional condition that requires
us to replaceC by aparticular number found by solving forC the equation expressing the condition that an
antiderivative satisfies the condition. Having an expression for the general antiderivative allows us to begin
the second part of such a problem

Another use ofC is to specialize it to allow several different antiderivatives to be graphed. Here, we
graphG(x), G(x)+ 1, G(x)− 1, andG(x)− 2.
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Exercise 10 This asks for theindefinite integral
∫ √

2dx =
√

2 x + C.
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Here,
√

2 is constant so its antiderivative is based on

d

dx
x = 1.

Exercise 15 This asks for theindefinite integral

∫
x2/3 dx = 3

5
x5/3+ C.

We illustrate at process combiningdiscoveryandverification in which we start from simple differentiation
formulassuggested by general principles, and modify them until we find the correct integral. Since the
course has emphasized differentiation, this is an alternative to introducing a second collection of formulas
for integrals. The formulas for these twoinverseoperations are sufficiently similar that they could be easily
confused. Since differentiation formulas are based on a definition as a limit whose steps can be retraced
when necessary, this is the more reliable method for remembering the formulas. Common practice (including
the formula sheet for this course) is just the opposite: the assumption there is that you already know the
differentiation formulas but will need to consult a table for the inverse operation. Quite elaborate tables
have been prepared that summarize all the tricks that have been used in integration, but the problems you
are likely to meet in this course are simple enough that you only need to know how toverify that you have
found the clue that leads to the correct answer. The notation for our solution will consist of atable of F : F ′
pairs. For this problem, it looks like

F : F ′

xn : nxn−1

x5/3 :
5

3
x2/3

ax5/3 :
5

3
ax2/3

3

5
x5/3 : x2/3

Beginning with the general power rule, we see theF must containx5/3 if F ′ is to containx2/3. Then a
constant multiple of a function has a derivative that is the same constant multiple of the derivative of that
function. Now, a little algebra (very little ) shows that we can make the coefficient(5/3)a equal to the given
coefficient of1 by settinga = 3/5.

The last line of the tableverifiesone antiderivative, and the+C gives a general formula for all.

A Variant This tabular method comes into its own when you can see the form of the solution, but
there will be severalchain rule factors that get combined whenverifying the answer. The next section will
introduce amethod of substitution that successfully inverts the chain rule, but it requires that the details
of the factors be introduced in different parts of the process and combined at the end. This often introduces
errors, so it should always be checked. It may be more accurate to use the general method to find theshape
of the solution and save the details for a verification step. Here is an example.

∫
(2x + 1)4/3 dx



640:135, extra notes for lecture 20, p. 3

We expect that, up to a constant factor, one answer will be(2x + 1) raised to a power that is one more than
the given4/3, so we start there.

F : F ′

(2x + 1)7/3 :
7

3
(2x + 1)4/3(2)

:
14

3
(2x + 1)4/3

a(2x + 1)7/3 :
14

3
a(2x + 1)4/3

To get the given coefficient of1, we needa = 3/14, so the answer is
∫
(2x + 1)4/3 dx = 3

14
(2x + 1)7/3

Exercise 17 Find ∫
x−5/4 dx.

After the initial power rule observation, we have

F : F ′

x−1/4 :
−1

4
x−5/4

ax−1/4 :
−a

4
x−5/4

Solving−a/4 = 1 givesa = −4. (Turning the problem into algebra avoids a formula for the answer that
asks to divide by−1/4. This is one place where algebra is clearer that arithmetic.) Thus,

∫
x−5/4 dx = −4x−1/4+ C.

Exercise 20 Find ∫
1

3x5
dx.

This should be rewritten as ∫
1

3
x−5 dx

to isolate the constant factor and to use negative exponents to avoid havex in a denominator. We are now in
a position to use a power rule.

F : F ′

ax−4 : −4ax−5

and we need−4a = 1/3, soa = −1/12. Now that the calculus has been done successfully, we can put the
x back in the denominator to get ∫

1

3x5
dx = 1

12x4
+ C.
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Exercise 25 Sometimes, several terms need to be combined by thesum rule. The table will be
used to find the terms (we will identify them with(•) at the end of the line). Find

∫
x2+ x + x−3 dx.

We build a table omitting the general statement of the power rule and explicit identification of the coefficient
a used in setting up the easy algebra to find the correct coefficient. With practice, this approach becomes
efficient by limiting what needs to be written. You should add as many details as you need to make the
process clear.

F : F ′

x3 : 3x2

1

3
x3 : x2 (•)

x2 : 2x

1

2
x2 : x (•)

x−2 : −2x−3

−1

2
x−2 : x−3 (•)

Combining these terms and adding an arbitrary constant gives (with exponents written in decreasing order)
∫

x2+ x + x−3 dx = 1

3
x3+ 1

2
x2+ C − 1

2
x−2.

Exercise 29 Find ∫
1+ x + ex dx.

Here is the table.
F : F ′

x : 1 (•)
x2 : 2x

1

2
x2 : x (•)
ex : ex (•)

Hence, ∫
1+ x + ex dx = x + 1

2
x2+ ex + C.

Exercise 37 It is not always necessary to usex an theindependent variable. The notation reminds
us of the variable by including it in thedifferential that marks the end of the notation for an integral. Find

∫
u3+ 2u2− u

3u
du.
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It is important touse algebra first to put this in the form that derivatives first appear. In this case, the
denominator needs to be divided intoeach termof the numerator and numerical coefficients isolate from
the powers ofx. The result is ∫

1

3
u2+ 2

3
u− 1

3
du.

The answer is now seen to be
1

9
u3+ 1

3
u2− 1

3
u+ C.

Exercise 42 . Another example, this time with fractional exponents and a differentindependent
variable. Find ∫ √

t
(

t2+ t − 1
)

dt.

Perform the multiplication to get ∫
t5/2+ t3/2− t1/2 dt.

Also note thatfractional exponentsare used in place of radicals since that is the form preferred in calculus.
Now, we can work term-by-term to get

2

7
t7/2+ 2

5
t5/2− 2

3
t3/2+ C.

A Final Exercise A more striking example of the need to do algebra first is

∫ (
t + 1

)(
t + 3

)
dt

∫
t2+ 4t + 3dt

1

3
t3+ 2t2+ 3t + C
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