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A.1 Population Growth Models

A.1.1 The exponential growth model

As preparation for the logistic equation, we shall quickly review the exponential

growth model for the number Q = Q(t) of individuals (people, mice, bacteria) in a

population as a function of time t. The key idea in this model is that the rate of change

of Q is proportional to Q. This leads to the differential equation

dQ/dt = kQ

for some relative growth rate k. (k is the fraction that the population increases by per

unit time.) The solution to this differential equation is

Q(t) = Q0e
kt

where Q0 = Q(0) is the population at time t = 0.

Usually k is of the form k = kb − kd, where kb is the birth rate and kd is the

death rate. If time is measured in years (or days), then kb is the average number of

offspring produced by one individual per year (or per day). (In animals, this should

really be the average number of female offspring produced by one female per year, but

if the population is 50% female we would get the same value for kb.) One common

approximation of the death rate is to set kd = 1/A, where A is the average lifespan.

Example 1 In a human population with an average lifespan of 70 years and 1.77

children born per year per 100 people, the birthrate and death rate are approximately

kb = 1.77
100 = 0.0177, kd = 1

70 = 0.0143

so that k = 0.0034years−1, and the exponential model predicts

Q(t) = Q0e
(0.0034)t, with t measured in years.
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In the limit, for large values of t, we have:

for k > 0 Q(∞) = ∞ population explosion

for k = 0 Q(∞) = Q0 constant population

for k < 0 Q(∞) = 0 population dies out.

Here are the graphs of the solutions:

Q

t=0 t  large

Population explosion (k > 0)

Q

t=0 t  large

Species extinction (k < 0)

The most interesting case is the explosive growth case, when k > 0. It is common

to describe this situation in terms of the time T that is needed for the population to

double, i.e., for Q(T ) = 2Q(0). From the explicit solution, this is when

ekT = 2, or kT = ln 2, or: T = ln 2
k

.

Note that the population doubles over any time interval of length T (say between time

t and t + T ), because Q(t + T ) = Q0e
ktekT = 2Q(t).

Exercises

1. The U.S. population was 4 million in 1790 and 248.7 million in 1990. Using the

exponential model, estimate the population in the years 1620, 1865, 1973, 1998,

2000. Compare these with the actual population of 0.003, 35, 179.3 and 268

million people.

2. The population in Monrovia grows by 10% per year, and was 1 million in 1980.

What is the relative growth rate (in new citizens per year per individual)?
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A.1.2 Defects

The most obvious defect of the exponential growth model is the assumption made

that the growth rate depends only on the size of the population. The following factors

are totally neglected:

1. Limits to growth. No population can increase exponentially forever. One limiting

factor is the availability of food supply. Another is the population density. In

models of parasite population, the size of the host population is a limit to the

growth of the parasite. The logistic equation is designed to model these defects.

2. Age and Sex. Not all individuals can reproduce. Among humans, for example,

only females in a certain age range can give birth. Moreover, the death rate

increases with age. Neither the exponential nor the logistic equation takes this

into consideration. You will encounter a population model addressing these points

in Keller’s supplement Population Projection. This model requires the use of

matrices and linear algebra.

3. Predators. A population increase encourages the increase of natural enemies,

such as predators and infectious diseases. Thus the death rate rd is not constant.

Most models that consider these factors use linear algebra in a way similar to the

way we will handle the age/sex problem.

4. Immigration/Emigration. In modeling the U.S. population, immigration is a very

important factor, especially from 1620 to 1720. Currently, about 320,000 people

immigrate to the U.S. each year.

5. Technology. Over long periods of time, the birth rate and death rate of human

population have changed, due to an increase in the standard of living, the devel-

opment of birth control, the control of disease (especially in the 19th century),

and the rise of medical death-postponing technology.
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A.2 The Logistic Equation

A.2.1 Justification and derivation

In some populations, such as micro-parasite populations (smallpox, polio, herpes),

the birth rate is proportional to both the infected host population Q and the susceptible

host population L − Q (where L is the total infectable host population, i.e., the upper

limit of Q). That is, the birth rate is proportional to the product (L − Q)Q.

In other populations, the death rate has a component proportional to the probability

of an encounter between two members of the population, i.e., to Q2. A very important

example of this is the epidemic transmission of deadly diseases (bubonic plague in

1348, cholera epidemics in the 19th century, AIDS in today’s third world), or diseases

that weaken and shorten life (the epidemic spread of syphilis in the 16th century, or

hookworm in the American south in the 1870’s).

Thus a reasonable (yet simple) modification of the exponential growth model is to

subtract a quadratic term:

dQ/dt = aQ − kQ2.

This is the logistic equation. It is useful to set L = a/k and rewrite this equation as

dQ/dt = kQ(L − Q)

This form makes it clear that one particular solution of the logistic equation is a constant

population Q = L. Our textbook uses the letter B instead of L and calls it the carrying

capacity but the more traditional term is the limit to growth.

The constant L is an equilibrium population in the following sense. If the population

is less than L (0 < Q < L) then the rate of change dQ/dt is positive, so that the

population increases. If the population Q is more than L, then the rate of change

dQ/dt is negative, so that the population decreases. In fact, the explicit formula for Q

found in the next section will show that the population will always tend toward L as

the time t tends to ∞. In symbols:

lim
t→∞

Q(t) = L.
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A.2.2 Explicit solution

In order to solve the logistic equation, we put it in the form

k dt =
dQ

Q(L − Q)
.

To integrate this, we multiply by L and use the “partial fractions” trick that:

L

Q(L − Q)
=

1

Q
+

1

L − Q
.

Substituting the right hand side into the equation, we get:

L

∫

k dt =

∫

L dQ

Q(L − Q)
=

∫
[

1

Q
+

1

L − Q

]

dQ,

which (since L and k are constant) integrates to:

(Lk)t = ln |Q| − ln |L − Q| + C.

We want to solve this for Q as a function of t. Recall that a = Lk. Taking exponentials

of both sides, and setting A = eC , we get

eat = A

∣

∣

∣

∣

Q

L − Q

∣

∣

∣

∣

for some constant A > 0.

Suppose first that 0 < Q < L, which is the case in most biological models. In this cae,

we can ignore the absolute value signs, and calculate:

AQ = eat(L − Q) = eatL − eatQ;

eatQ + AQ = eatL;

Q =

[

eatL

eat + A

]

·

[

e−at

e−at

]

;

Q =
L

1 + Ae−at
, 0 < Q < L and A > 0.
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Similarly, if we keep track of the absolute value signs, we get

Q =
L

1 − Ae−at
, Q > L and A > 0.

To find the value of the constant A, set t = 0, Q = Q(0) = Q0. We get

Q0 =
L

1 ± A
.

Solving for A yields

A =

∣

∣

∣

∣

(L/Q0) − 1

∣

∣

∣

∣

.

Notice that as t goes to ∞, e−at goes to 0, and the population Q goes to L in the

limit. This confirms the qualitative assertion we made earlier that L is the equilibrium

population. Here are the graphs of the solutions:

0

the limit L to growth

t  larget=0

Q=L

Q=L/2

0 < Q < L

Q

0

t=0 t  large

decays to stable population L

Q = L

Q > L

Q

Exercise

1. Show that the inflection point in the left graph occurs when Ae−at = 1 and

Q = L/2. Hint: start with dQ/dt = aQ − kQ2 and differentiate, using L = a/k.

The most interesting case of the logistic equation is when 0 < Q < L. When Q is

much less than L = a/k, kQ is much less than a, and kQ2 is much smaller than aQ.

The logistic equation tells us then that we have approximately

dQ/dt ∼= aQ,
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i.e., exponential growth. When Q reaches L/2, though, the growth rate dQ/dt switches

from increasing to decreasing because of the inflection point. The growth rate then

slows more and more as the population Q approaches the limiting population Q ≈ L,

finally reaching a stable, equilibrium population.

You may encounter the logistic equation in an alternative form, where we choose

t = t0 to be the time when Q = L/2. This form is obtained by setting A = eat0 :

Q =
L

1 + ea(t0−t)
.

A.2.3 Calculations with the logistic equation

Suppose that we have a number of observations of a population, e.g. bacteria

growing in a medium. How can we test whether the growth fits a logistic equation? Be-

cause the equation contains transcendental functions, this may appear difficult. How-

ever, it is quite easy to calculate with populations at equally spaced time intervals,

t = nT, n = 0, 1, 2, . . . . (Each interval has length T .)

To do this, we turn the solution upside down, and get

1

Q
=

1

L
+

A

L
e−at .

Setting Q0 = Q(0), Q1 = Q(T ) and Q2 = Q(2T ) yields the equations

1

Q0
=

1

L
+

A

L
, and

1

Q1
=

1

L
+

A

L
e−aT , and

1

Q2
=

1

L
+

A

L
e−2T (1)

1

Q0
−

1

Q1
=

[

A

L

]

·
[

1 − e−aT
]

(2)

1

Q1
−

1

Q2
=

[

A

L

]

·
[

e−aT − e−2aT
]

= e−aT ·

[

A

L

]

·
[

1 − e−aT
]

. (3)

The ratio of (3) to (2) is

[

1
Q1

− 1
Q2

]

[

1
Q0

− 1
Q1

] = e−aT
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and this can be used to find the constant a. (Take the logarithm of both sides.) Plugging

this value of e−aT back into equation (2) lets us find A/L :

[

A

L

]

=

[

1
Q0

− 1
Q1

]

[1 − e−aT ]
. (4)

But from (1) we get L, since its reciprocal L−1 is

1

L
=

1

Q0
−

A

L
.

We now know (but don’t need) k = a/L. Finally, A = L · (A/L). We have now found

the entire logistic equation.

To test whether the growth fits the logistic equation, measure Q3 = Q(3T ) and

compare it to the formula we just found.

Example 2 Three successive observations of a bacterial population gave results:

time t population Q(t)

0 5.00 × 105

1 day 1.60 × 106

2 days 2.50 × 106

Assume that Q(t) obeys the logistic equation, and use this model to predict the equi-

librium population L, as well as the bacterial population Q(3) after 3 days.

To solve this problem, it is convenient to measure Q in millions to get rid of the 106

factor. We choose T = 1 day for the time intervals and form the following tableau:

t Q 1/Q difference ratio = e−a

0 0.500 2.0000

1.3750

1 1.600 0.6250 0.163636 so a = − ln (.163636) = 1.181001

0.2250

2 2.500 0.4000
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Equation (4) gives A/L = 1.6440. From this we get L = 2.8092 and A = 4.6756. Thus

our population model uses the logistic equation:

Q =
2.8092

1 − 4.6756 · e−1.81011t
million bacteria after t days.

Exercises

1. The world population (in billions) was

3.049 in 1960

3.721 in 1970

4.473 in 1980 (source: U.S. Bureau of census).

Assume that the world population obeys the logistic equation.

(a) Predict the population in 1990 (estimated to be 5.25 billion).

(b) Predict the equilibrium world population (Answer: 12.77 billion).

(c) To test whether the growth fits the logistic equation, predict the population

in 1950, which was 2.490 billion. Why is it not a good idea to test the

equation with the 1800 population of 0.910 billion?

2. The U.S. population (in millions) was

0.905 in 1740 (British Colonial census)

3.929 in 1790 (first U.S. census)

17.069 in 1840

62.979 in 1890

132.164 in 1940

(a) Fit the U.S. populations of 1790, 1840 and 1890 to a logistic equation, and

find the equilibrium population L of that model. (Answer: 250.7 million.)

(b) Test your answer against the populations in 1740 and 1940. The birth rate

during the Depression (1930’s) was very low; can you give reasons for this?

10



(c) How does the (legal) immigration rate of 800,000 people per year affect the

differential equation dQ
dt

= aQ−kQ2 ? (Until about 1990 this rate was about

300,000 people per year.)

(d) The Census Bureau made two population projections recently: 1) that the

U.S. population will peak at 302 million sometime around the year 2050,

and 2) that it will continue to grow, reaching 393 million by the year 2050.

Which do you believe, and why?

(See http://www.census.gov for more information.)
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(valid before 1880)

L = 294 million
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3. The following statistics were released by the State Health Department in 1994.

(The right column updates these numbers; reporting methods changed in 1993.)

N.J. AIDS Cases — Cumulative Known Dead (By Year of Diagnosis)

1980 9 1985 1,337 1989 7,600 1995 20,000

1981 33 1986 2,465 1990 9,267 2000 25,500

1982 100 1987 4,078 1991 10,696 2005 32,000

1984 622 1988 5,722 1992 11,571 2010 38,000

(a) Fit the data for 1984, 1988, 1992 to a logistic equation, and find the equilib-

rium number L of deaths by AIDS in New Jersey, predicted by this model.

(Answer: e−a = .498, L = 12, 404.)

1980 19941984 1990

1,000

2,000

5,000

10,000

12,000

L=12,404

7,000

Cumulative no. Deaths by AIDS in N.J.  (1994 data)

L/2 = 6,202

(b) Using the logistic model predict the cumulative number of deaths by AIDS

by the end of 1993. (Answer: 11,974, or 203 deaths during 1993.) There

were 173 reported deaths from Jan. 1 – Oct. 1 in 1993.

(c) Give three reasons why the logistic model is inappropriate for this statistic.

Then explain why the logistic model fits the data as well as it does.

Hint: People die many years after they contract AIDS. In 1993 there were

7,000 reported cases of people with AIDS in New Jersey. Anti-retroviral

therapy became available in 1995. In 2010 there were 35,000 people living

with HIV or AIDS in New Jersey.
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4. Better reporting methods were adopted by New Jersey in 1994, and anti-retroviral

therapy became available in 1995. After that date, the NJ Health Department

focussed upon cumulative cases with AIDS, and also HIV cases which had not yet

developed into AIDS.

The following statistics were released by the State Health Department in 2010.

N.J. AIDS Cases — Cumulative AIDS cases in New Jersey

1985 972 1990 9,867 1995 28,047 1996 31,523

1997 34,687 1998 36,761 1999 38,700 2000 40,531

2003 45,881 2005 48,858 2007 50,810 2010 53,420

(a) Fit the data for 1990, 2000, 2010 to a logistic equation, and find the equilib-

rium number L of deaths by AIDS in New Jersey, predicted by this model.

(Answer: e−10a = 0.088, L = 55, 120.)

(b) Using the logistic model predict the cumulative number of AIDS cases by

the end of 2005. (Answer: 49,791)

(c) The logistics model predicts only 25,000 AIDS cases by 1995. Explain why

the cumulative number of AIDS cases diagnosed is more than the logistics

model for 1992–1995.

(d) Explain why it is unreasonable to expect that there will be at most L cases

of AIDS by the end of 2020. What is missing from the model?
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B.1 Systems of Linear Equations and Matrices

A solution to a system of simultaneous equations in n unknowns is an ordered n-tuple

of numbers which satisfies all the equations of the system. For example, consider the

following system of linear equations in the unknowns x, y and z:

x – 5y + 2z = -5,

3x – 14y + 3z = -8,

4x – 18y + 3z = -8.

(1)

To solve this system, we need to find a 3-tuple (x, y, z) of numbers which satisfies all

three equations. Here is one way to go about it. If we subtract 4 times the first equation

from the third equation and leave the first two equations alone, we obtain

x – 5y + 2z = -5,

3x – 14y + 3z = -8,

2y – 5z = 12.

(2)

By subtracting 3 times the first equation from the second equation in (2), we get

x – 5y + 2z = -5,

y – 3z = 7,

2y – 5z = 12.

(3)

We now subtract 2 times the second equation from the third equation in (3) to obtain

x – 5y + 2z = -5,

y – 3z = 7,

z = -2.

(4)

If we add 3 times the third equation to the second, and subtract 2 times the third

equation from the first , we have

x – 5y = -1,

y = 1,

z = -2.

(5)
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Finally, by adding 5 times the second equation to the first, we get

x = 4,

y = 1,

z = -2.

(6)

Thus the only possible solution of (1), the original system of equations, is (4, 1,−2), or

x = 4, y = 1, z = −2.

We can verify by substitution that (4, 1,−2) is a solution of the original system (1).

It is also instructive to to verify that (4, 1,−2) is also a solution of the systems (2), (3),

(4), and (5). These systems, (1) – (5), are equivalent:

Definition 1 Two systems are said to be equivalent if every solution of each system is

also a solution of the other.

Here are three operations we can do to a system of linear equations which will result

in an equivalent system:

i. changing the order of the equations;

ii. multiplying all members of an equation by a nonzero constant;

iii. adding a multiple of one equation to another equation.

The letters used to represent the unknowns in a system of linear equations are not

important. The solution of the system (1) is exactly the same as the solution of the

system

u – 5v + 2w = -5,

3u – 14v + 3w = -8,

4u – 18v + 3w = -8,

namely (4, 1,−2). Since only the coefficients and the constant terms affect the solution,

we might omit the unknowns and the equality signs and simply write the numbers:
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1 -5 2 -5

3 -14 3 -8

4 -18 3 -8













.

Such a rectangular array of numbers is called a matrix. Its rows run horizontally and

its columns run vertically. This matrix has three rows and four columns. Notice that

the first column contains the coefficients of the first unknown variable, and so on for the

next two columns, and the last column contains the constant terms. Since this matrix

has 3 rows and 4 columns, it’s dimension is 3× 4 (three by four). In the dimension, the

number of rows comes before the number of columns.

Let’s repeat our process for solving the system (1) and see what happens to the

matrix at each step. We start with

x – 5y + 2z = -5,

3x – 14y + 3z = -8,

4x – 18y + 3z = -8.













1 -5 2 -5

3 -14 3 -8

4 -18 3 -8













(1′)

The vertical bar is not part of the matrix; it was inserted to remind us that the numbers

to the left of the bar are the coefficients of the unknowns, and the column to the right

of it shows the right hand side. This is called the augmented matrix of the system.

As before, we first subtract 4 times the first equation from the third equation (and

4 times the first row of the matrix from the second row of the matrix).

x – 5y + 2z = -5,

3x – 14y + 3z = -8,

0x + 2y – 5z = 12.













1 -5 2 -5

3 -14 3 -8

0 2 5 12













(2′)

We next subtract 4 times the first equation (row) from the second equation (row).

x – 5y + 2z = -5,

0x + y – 3z = 7,

0x + 2y – 5z = 12.













1 -5 2 -5

0 1 -3 7

0 2 5 12













(3′)

Now we subtract 2 times the second equation (row) from the third.
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x – 5y + 2z = -5,

0x + y – 3z = 7,

0x + 0y + z = -2.













1 -5 2 -5

0 1 -3 7

0 0 1 -2













(4′)

We add 3 times the third equation (row) to the second, and subtract 2 times the third

equation (row) from the first.

x – 5y + 0z = -1,

0x + y – 0z = 1,

0x + 0y + z = -2.













1 -5 0 -1

0 1 0 1

0 0 1 -2













(5′)

Finally, we add 5 times the second equation (row) to the first to get:

x – 0y + 0z = 4,

0x + y – 0z = 1,

0x + 0y + z = -2.













1 0 0 4

0 1 0 1

0 0 1 -2













. (6′)

The solution (4, 1,−2) of the original system of equations (1′) can now be read from

the fourth column of the matrix in (6′).

The operations on the augmented matrix of the system of equations in steps (2′)–(6′)

are called elementary row operations. They are

i. changing the order of the rows;

ii. multiplying a row by a nonzero constant;

iii. adding a multiple of one row to another row.

If a matrix can be obtained from another matrix by elementary row operations, the

matrices are said to be row equivalent. Since the corresponding operations on a system

of linear equations always result in an equivalent system, row equivalent matrices must

belong to equivalent systems of linear equations.

The first three columns in the matrix of the system of equations (1),












1 -5 2

3 -14 3

4 -18 3
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form the coefficient matrix. Since this matrix has three rows and three columns, it is a

square matrix. The diagonal of elements from the upper left-hand corner to the lower

right-hand corner of a square matrix is called its principal diagonal.

We found the solution of the given system of equations (1) by reducing its augmented

matrix above to the matrix












1 0 0 4

0 1 0 1

0 0 1 -2













by means of elementary row operations. Notice that the final coefficient matrix has 1’s

in its principal diagonal and zeros elsewhere. This is the method which is applied to

any system of n linear equations in n unknowns.

Example 3 By elementary row operations on its augmented matrix, solve the system

5x – 4y = -22,

3x + 7y = 15.

Solution. The augmented matrix of this system of linear equations is





5 -4 -22

3 7 15



.

Our objective is to reduce its coefficient matrix to





1 0

0 1





by elementary row operations on the augmented matrix.

At each stage, let R1 denote the first row and R2 denote the second row. We begin

with the augmented matrix





5 −4 −22

3 7 15



.

Combining two operations, we multiply the second row by 5 and add (−3R1) to (5R2).

This replaces the second row with (−3R1) + 5R2 yielding

18







5 −4 −22

0 47 141



.

Now we multiply the first row by 1
5 and the second row by 1

47 to get





1 −4
5

−22
5

0 1 3



.

Finally, we replace the first row with R1 + 4
3R2 with the result





1 0 −2

0 1 3



.

The solution of the given system is then (−2, 3). You should verify that our solution

x = −2, y = 3 does indeed satisfy both the given equations of the system.

Both the examples of linear systems of equations we have looked at so far have one

and only one solution. But some systems of n linear equations in n unknowns have

infinitely many solutions and others have no solutions.

To understand how each case may occur, we consider systems of three equations and

three unknowns. In three-dimensional Cartesian space the solutions of each equation

form a plane. If the three equations correspond to three planes which intersect in just

one point, the system of equations has a unique solution, the coordinates of the single

common point. If the three planes have a line in common, their system of equations

has an infinity of solutions since the coordinates of every point on their common line

satisfy all three equations. If the line of intersection of two planes is parallel to the

third plane, their system of equations has no solution.

The matrix method of solution we have been discussing may be applied to all these

cases and will reveal which case occurs.

Example 4 Solve the system

x + 2y – z = 6,

-x + 4y – z = 8,

2x + y – z = 5.
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by elementary row operations on its matrix.

Solution. The augmented matrix of the given system is













1 2 −1 6

−1 4 −1 8

2 1 −1 5













.

Again at each stage, we refer to the first row by R1, the second row by R2 and the third

row by R3.

First, we replace R3 by (−2R1) + R3













1 2 −1 6

−1 4 −1 8

0 −3 1 −7













.

Now we replace R2 by R1 + R2













1 2 −1 6

0 6 −2 14

0 −3 1 −7













.

Next, we replace R2 by R2 + 2R3, multiply R3 by −1 and switch R2 and R3













1 2 −1 6

0 3 −1 7

0 0 0 0













.

So the original system of three equations is equivalent to the system of two equations:

x + 2y – z = 6,

3y – z = 7.

This system has infinitely many solutions. If y is assigned an arbitrary value t, we use

the equation 3y − z = 7 to get that z = 3t− 7, then we use the equation x+ 2y − z = 6

and our values for y and z in terms of t to get x = t − 1. Therefore, every solution of

the given system has the form (t− 1, t, 3t − 7), where t is a real number. If we plot the

solutions of the given system, we get the line in 3-space whose parametric equations are

20



x = t − 1, y = t, z = 3t − 7, −∞ < t < +∞.

Example 5 Investigate the solutions of the system

x + 2y – z = 6,

-x + 4y – z = 8,

2x + y – z = 4

by elementary row operations on its matrix.

Solution. Notice that this system differs from the system of Example 2 only in the right

hand side of the third equation. The matrix of this system is













1 2 −1 6

−1 4 −1 8

2 1 −1 4













.

If we perform exactly the same elementary row operations on this matrix as we did on

the augmented matrix of Example 2 we will find that it reduces to the row equivalent

matrix












1 2 −1 6

0 3 −1 7

0 0 0 −2













.

The third row of this matrix is equivalent to the equation 0 = −2, which is false for all

x, y, z. Therefore the given system has no solution.

Exercises

1. Describe all solutions of a linear system whose corresponding augmented matrix

can be row reduced to the matrix below. Also give a specific solution with x3 = 2.





1 −1 2 3

0 1 4 2
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2. In (a) and (b) below, find all solutions of the given linear system by using ele-

mentary row operations on its augmented matrix to reduce it to the form





1 0 a

0 1 b



.

(a)
2x − y = 8

6x − 5y = 32
(b)

7x1 − 2x2 = 7

3x1 + 13x2 = 3

3. In (a) and (b) below, find all solutions of the given linear system by using ele-

mentary row operations on its augmented matrix to reduce it to the form













1 0 0 a

0 1 0 b

0 0 1 c













.

(a)

x1 + 3x2 − 2x3 = −7

2x1 − x2 + x3 = −9

4x1 − 2x2 − 3x3 = −23

(b)

7x − y − z = 7

4x + 3y − 5z = −4

−2x + 6y − 11z = −19

4. Use elementary row operations on the augmented matrix of the system of linear

equations below to show that the system has no solutions.

x + 4y − 2z = 4

2x + 7y − z = −2

2x + 9y − 7z = 1

5. Find all solutions of the given linear system below by using elementary row op-

erations on its augmented matrix.

−2x1 − 3x2 = 0

2x1 + 3x2 = 0
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B.2 Algebra of Matrices

Now that we have seen what matrices are good for, we need to know how to manipulate

them. Let’s begin with some vocabulary.

Definition 2 Let m and n be positive integers. An m × n (m by n) matrix

A =

























a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

· · · · · · ·

am1 am2 am3 · · · amn

























is a rectangular array of numbers aij, arranged in m rows and n columns (so that the

first subscript i goes from 1 to m, and the second subscript j goes from 1 to n). We

say that A has dimension m × n.

The numbers aij are the entries of the matrix; the first subscript indicates the row in

which the entry appears and the second subscript indicates the column. So for example,

a25 is the entry in the second row and fifth column.

It is often convenient to indicate an m × n matrix briefly by [aij ]mn.

Two m×n matrices, A = [aij ]mn and B = [bij ]mn, are said to be equal if and only if

aij = bij

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Thus two matrices are equal if and only if they

have the same dimension, and all their corresponding entries are equal.

Definition 3 If A = [aij ]mn and B = [bij ]mn are m × n matrices, their sum is the

m × n matrix

A + B = [aij + bij ]mn.

In other words, if two matrices have the same dimension, they may be added by

adding corresponding entries.

For example, if
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A =





2 −7

−3 4



 and B =





−5 0

1 6





then

A + B =





2 + (−5) −7 + 0

−3 + 1 4 + 6



 =





−3 −7

−2 10



.

Addition of matrices, like equality of matrices, is defined only for matrices having

the same dimension. Note that addition of matrices is commutative and associative.

That is, if A, B, and C are matrices having the same dimension, then

A + B = B + A and A + (B + C) = (A + B) + C.

Definition 4 The product of a number k and an m×n matrix A = [aij ]mn is the m×n

matrix

kA = [kaij ]mn.

As an example,

6





−1 0 4

5 2 −7



 =





6(−1) 6(0) 6(4)

6(5) 6(2) 6(−7)



 =





−6 0 24

30 12 −42



.

If all the entries of a matrix are zeros, it is called a zero matrix and is written as 0.

A matrix of 1 row and n columns, that is, a 1 × n matrix

[a1 a2 · · · an],

is called an n-dimensional row vector. A matrix of n rows and 1 column, that is, an

n × 1 matrix



















a1

a2

...

an



















,
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is called an n-dimensional column vector. The dot product of an n-dimensional row

vector and an n-dimensional column vector is the number

[a1a2 · · · an]



















b1

b2

...

bn



















= a1b1 + a2b2 + · · · + anbn.

Using this, we can define the product of two matrices whose sizes match up.

Definition 5 If A is an m × n matrix

A =

























a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

· · · · · · ·

am1 am2 am3 · · · amn

























and if B is an n × r matrix

B =

























b11 b12 b13 · · · b1r

b21 b22 b23 · · · b2r

b31 b32 b33 · · · b3r

· · · · · · ·

bn1 bn2 bn3 · · · bnr

























the product AB is the m × r matrix P = [pij]mr where pij is the dot product of the ith

row vector of matrix A and the jth column vector of matrix B. That is to say,

pij = [ai1ai2 · · · ain]



















b1j

b2j

...

bnj



















= ai1b1j + ai2b2j + · · · + ainbnj,

pij =
n

∑

t=1

aitbjt.
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For the definition of the product AB to make sense, it is necessary that the number

of columns in A be the same as the number of rows in B. That is, the second number

n in the dimension m×n of A must be the same as the first number n in the dimension

n × r of B. The numbers m and r can be any positive integers.

Example 6 Compute AB if

A =





a11 a12 a13

a21 a22 a23



 and B =













b11

b21

b31













.

Solution. The dimension of A is 2× 3 and the dimension of B is 3× 1, so AB is a 2× 1

matrix. Using the definition, we find that

AB =





a11b11 + a12b21 + a13b31

a21b11 + a22b21 + a23b31





Example 7 Compute AB where

A =













2 3

−1 4

5 −2













and B =





3 1 4 −5

−2 0 3 4



.

Solution. Here A is a 3 × 2 matrix and B is a 2 × 4 matrix.

AB =













2 3

−1 4

5 −2

















3 1 4 −5

−2 0 3 4





=













2(3) + 3(−2) 2(1) + 3(0) 2(4) + 3(3) 2(−5) + 3(4)

−1(3) + 4(−2) −1(1) + 4(0) −1(4) + 4(3) −1(−5) + 4(4)

5(3) − 2(−2) 5(1) − 2(0) 5(4) − 2(3) 5(−5) + −2(4)













=













0 2 17 2

−11 −1 8 21

19 5 14 −33













.
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Here are some basic facts about matrix multiplication:

i. Associative law: If A, B, and C are matrices of dimension m×n, n×p and p× q,

respectively, then

(AB)C = A(BC).

ii. Distributive law: If A is an m × n matrix, if B and C are n × p matrices, and if

D is a p × q matrix, then

A(B + C) = AB + AC

and

(B + C)D = BD + CD.

However, there is no commutative law. Let A be an m × n matrix and B an n × p

matrix. Then the product AB is defined, but the product BA has no meaning unless

m = p. For both AB AND BA to exist, A must have dimension m × n and B must

have dimension n × m. In such an event, AB will be an m × m matrix and BA will

be an n × n matrix. So in order for there to even be a chance that AB and BA are

equal, A and B must be square matrices (a square matrix has the same number of rows

as columns) of the same dimension. Even then the commutative law does not hold for

matrix multiplication as this next example shows.

Example 8 Let

A =





4 −3

2 5



 and B =





1 6

−7 −2



.

Then

AB =





4(1) + (−3)(−7) 4(6) + (−3)(−2)

2(1) + 5(−7) 2(6) + 5(−2)



 =





25 30

−33 2



,

and
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BA =





1(4) + 6(2) 1(−3) + 6(5)

−7(4) + (−2)(2) (−7)(−3) + (−2)(5)



 =





16 27

−32 11



.

Thus AB 6= BA.

We can express a system of m linear equations in n unknowns as one matrix equation.

As an example, consider the system of three linear equations in four unknowns,

a11x1 + a12x2 + a13x3 a14x4 = b1

a21x1 + a22x2 + a23x3 a24x4 = b2

a31x1 + a32x2 + a33x3 a34x4 = b3

Let

A =













a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34













, x =



















x1

x2

x3

x4



















, and b =













b1

b2

b3













.

The matrix A is called the coefficient matrix, the column vector x encodes the un-

knowns, and the column vector b encodes the constants on the right hand side of the

equations. It is easy to verify by matrix multiplication that this system can be written













a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34































x1

x2

x3

x4



















=













b1

b2

b3













or

Ax = b.
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Exercises

In exercises 1-10, let

A =





−2 1 3

4 0 −1



, B =





4 1 −2

5 −1 3



, C =













2 −1

0 6

−3 2













, D =













−4 2

3 5

−1 −3













.

Compute the indicated quantity when it exists. If it does not exist, tell why.

1. 3A 2. 0B

3. A + B 4. B + C

5. 2C − D 6. AB

7. (2A)(5C) 8. (2A − B)D

9. BC and CB 10. ADB

11. Let A =













0 0 −1

0 2 0

2 0 0













. Find A2 and A5.

In exercises 12 and 13, write the given system of linear equations in the form Ax = b

where A is the coefficient matrix of the system, x is the column vector of unknowns

and b is the column vector of constant terms.

12.

2x + 9y = 12

3x − 5y = −19

−x + 4y = 11

13.
3x1 + 5x2 − 2x3 = −7

−x1 + 4x2 + 8x3 = 24

B.3 Determinant of a matrix

Attached to each square matrix A is a number detA called the determinant of A. If
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A =



















a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·

an1 an2 · · · ann



















,

then the determinant of A is symbolized by the same square array, enclosed between

vertical bars:

det A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·

an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

If A is an n × n square matrix, (ie, if A is of dimension n × n) then we say A has

order n. We need a few preliminary definitions before we can define the determinant.

Definition 6 A submatrix of a matrix A is any matrix obtained from A by deleting

some of its rows or columns or both.

Definition 7 If A is an order n matrix and aij is the entry in the ith row and jth

column of matrix A, then we define the minor of aij to be the determinant of the

submatrix of A gotten by deleting the ith row and the jth column of A. We write Mij

for the minor of aij. The cofactor of aij, written Aij , is defined by

Aij = (−1)i+jMij .

Example 9 Find M32 and A32 if

A =













1 −5 2

3 4 −8

4 −7 3













.

Solution. To find M32, we need to find the submatrix of A gotten by deleting the third

row and the second column. We get the submatrix
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1 2

3 −8



.

Then the minor M32 is the determinant

M32 =

∣

∣

∣

∣

∣

∣

1 2

3 −8

∣

∣

∣

∣

∣

∣

= −14,

and the cofactor A32 is the signed minor

A32 = (−1)3+2M32 = −

∣

∣

∣

∣

∣

∣

1 2

3 −8

∣

∣

∣

∣

∣

∣

= +14.

We define the determinant of a square matrix by induction on the order n.

Definition 8 Let A be a square matrix of order n.

If n = 1, A = [a11] and detA is defined to be the number a11.

If n = 2,

A =





a11 a12

a21 a22



 and det A is defined by

∣

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

∣

= a11a22 – a12a21.

If n > 2, detA is the number defined by

detA = a11A11 + a12A12 + · · · + a1nA1n

where A1j is the cofactor of the element a1j .

Example 10 Find the determinant of the matrix

A =













1 5 6

−3 4 8

2 −7 3













.

Solution. According to the definition above,

detA =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 5 6

−3 4 8

2 −7 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (1)A11 + (5)A12 + (6)A13.
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We compute

A11 = (−1)1+1

∣

∣

∣

∣

∣

∣

4 8

−7 3

∣

∣

∣

∣

∣

∣

= (−1)2[(4)(3) – (8)(−7)] = 68,

A12 = (−1)1+2

∣

∣

∣

∣

∣

∣

−3 8

2 3

∣

∣

∣

∣

∣

∣

= (−1)3[(−3)(3) – (8)(2)] = 25,

A13 = (−1)1+3

∣

∣

∣

∣

∣

∣

−3 4

2 −7

∣

∣

∣

∣

∣

∣

= (−1)4[(−3)(−7) – (4)(2)] = 13.

Thus,

detA = (1)(68) + (5)(25) + (6)(13) = 271.

Recall that for an n × n matrix A, the cofactor Aij is defined to be (−1)i+jMij ,

where Mij is the determinant of the submatrix gotten by eliminating the ith row and

the jth column from the original matrix A. We can easily determine the sign (−1)i+j

attached to the minor Mij in each individual example by noticing the “checkerboard”

pattern the signs make in the entries of the matrix.

To illustrate this, suppose we want to find the cofactor A23 in the 4 × 4 matrix

A =













a11 · · · a14

...
. . .

...

a41 · · · a44













.

Then putting the sign (−1)i+j in the (i, j) position yields the checkerboard pattern



















+ – + –

– + – +

+ – + –

– + – +



















To get the sign for A23 we look in the (2, 3) position (the second row and third column)

and find a negative sign so

A23 = −M23.
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Then also we have

detA = a11M11 – a12M12 + a13M13 – a14M14.

Example 11 Find the value of the determinant of the following matrix:

A =



















5 −2 0 −1

0 1 5 2

1 2 0 1

−3 1 −1 1



















.

Solution. We have

det A = (5)A11 + (−2)A12 + (0)A13 + (−1)A14,

= (5)M11 − (−2)M12 + (0)M13 − (−1)M14.

So we need to compute M11, M12 and M14.

M11 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 5 2

2 0 1

1 −1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (1)(−1)1+1

∣

∣

∣

∣

∣

∣

0 1

−1 1

∣

∣

∣

∣

∣

∣

+ (5)(−1)1+2

∣

∣

∣

∣

∣

∣

2 1

1 1

∣

∣

∣

∣

∣

∣

+ (2)(−1)1+3

∣

∣

∣

∣

∣

∣

2 0

1 −1

∣

∣

∣

∣

∣

∣

= (1)[(0)(1) − (1)(−1)] − 5[(2)(1) − (1)(1)] + 2[(2)(−1) − (0)(1)] = −8.

Similarly, M12 = −22 and M14 = 36. So,

det A = (5)(−8) − (−2)(−22) + 0 − (−1)(36) = −48.

The computation of detA using our definition is called expansion by minors on the first

row. It turns out that det A can be obtained by using an expansion by minors on any

row or on any column:

Theorem 1 Let A be the n × n matrix [aij ]nn, and let r and c be any selections from

the list of numbers 1, 2, . . . , n. Then
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i. det A = ar1Ar1 + ar2Ar2 + · · · + arnArn, and

ii. det A = a1cA1c + a2cA2c + · · · + ancAnc.

Example 12 Find the determinant of the matrix

B =



















1 −5 2 −5

3 4 1 0

0 3 0 0

2 1 7 −3



















.

Solution. We could simply use the definition of the determinant to compute det B but,

as we have seen in the previous example, this requires a lot of work. However, using

the above theorem, we can also find det B by expanding by minors on the third row.

This will greatly eliminate the work necessary to find the determinant:

detB = (0)M31 − (3)M32 + (0)M33 − (0)M34 = (−3)M32.

By computing det B in this way we need only find the value of one cofactor, M32.

M32 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 −5

3 1 0

2 7 −3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (1)

∣

∣

∣

∣

∣

∣

1 0

7 −3

∣

∣

∣

∣

∣

∣

− (2)

∣

∣

∣

∣

∣

∣

3 0

2 −3

∣

∣

∣

∣

∣

∣

+ (−5)

∣

∣

∣

∣

∣

∣

3 1

2 7

∣

∣

∣

∣

∣

∣

= −80

So we get that detB = (−3)(−80) = 240.

It is not much harder to expand by minors on the fourth column. In this case we

get

detB = −(−5)M14 + (−3)M44 = (5)(57) − (3)(15) = 240.
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Exercises

1. Find the determinant of the given matrices.

A =





−8 3

7 −2



 B =





2 5

−4 9



 C =





−13 0

36 0





2. Find the determinant of the matrix













1 2 −1

2 1 1

3 −1 5













.

3. Find the determinant of the following matrix by expanding by minors on the third

row, and also by expanding by minors on the second column













1 0 7

17 1 −23

0 0 1













.

4. Find the determinant of the following matrix by expanding by minors on the

fourth column



















−2 1 3 −5

8 0 −5 0

0 −7 0 13

5 0 12 0



















.

5. Find det













−13 2 −5

0 0 0

12 4 3













by expanding by minors on the second row.

6. Show that the determinant of the 4 × 4 matrix

M =



















d1 1 2 3

0 d2 4 5

0 0 d3 6

0 0 0 d4
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is the product of the entries along the principal diagonal. A square matrix is

upper triangular if all entries below the principal diagonal are zero. What is the

determinant of any upper triangular matrix?

7. Find the determinant of the following matrix





1 − λ −3

2 6 − λ





where λ is any number.

B.4 Properties of the Determinant

Definition 9 The transpose of an m× n matrix A is the n×m matrix AT formed by

interchanging the rows and columns of A. The ith row of A is the ith column of AT .

For example, if

A =





2 −5 1 7

3 4 −3 −8



,

then

AT =



















2 3

−5 4

1 −3

7 −8



















.

For the rest of this section we will always consider A to be a square n × n matrix

unless otherwise stated.

Property 1 det A = detAT .

Property 2 If two consecutive rows (or two consecutive columns) of matrix A are

interchanged, the determinant of the resulting matrix is − detA.
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Proof of Property 2: We will prove this for interchanging two consecutive rows. The

column case follows from Property 1. Let A be an n×n matrix and let B be the matrix

A with row i and row i + 1 interchanged. Let

A =

































a11 a12 · · · a1n

· · · · · ·

ai1 ai2 · · · ain

a(i+1)1 a(i+1)2 · · · a(i+1)n

· · · · · ·

an1 an2 · · · ann

































.

Then

B =

































a11 a12 · · · a1n

· · · · · ·

a(i+1)1 a(i+1)2 · · · a(i+1)n

ai1 ai2 · · · ain

· · · · · ·

an1 an2 · · · ann

































.

We write the determinant of matrix A using the expansion by minors along the ith row:

detA = ai1(−1)i+1Ai1 + ai2(−1)i+2 + · · · + ain(−1)i+nAin.

Notice that the cofactor B(i+1)j of position (i + 1, j) of B is the same as the cofactor

Aij of position (i, j) of A. We write the determinant of matrix B using the expansion

by minors along the (i + 1)st row:

detB = ai1(−1)(i+1)+1B(i+1)1 + ai2(−1)(i+1)+2B(i+1)2 + · · ·+ ain(−1)(i+1)+nB(i+1)n

= ai1(−1)(i+1)+1Ai1 + ai2(−1)(i+1)+2 + · · · + ain(−1)(i+1)+nAin

= (−1)ai1(−1)i+1Ai1 + ai2(−1)i+2 + · · · + ain(−1)i+nAin

= − detA.

Property 3 If all the entries in a row (or column) of matrix A are zero, the value of

the determinant is zero.
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Property 4 If two rows (or columns) are proportional, the value of the determinant

is zero.

Property 5 If a single row (or column) of matrix A is multiplied by a constant k, the

determinant of the resulting matrix is k · det A.

Proof of Property 5: Let B be the matrix obtained from A by replacing the ith row

[ai1 ai2 · · · ain] of A by [kai1 kai2 · · · kain]. Since the rows of B are equal to the rows

of A except possibly for the ith row, the cofactors Aij and Bij are the same for each j.

If we compute det B by expanding by minors on the ith row, we have

det B = kai1Ai1 + kai2Ai2 + · · · + kainAin

= k(ai1Ai1 + ai2Ai2 + · · · + ainAin)

= k · detA.

The proof for columns is similar.

Property 6 If we add a constant times one row of a matrix A to a different row of A

the determinant of the resulting matrix is the same as det A.

Proof of Property 6: Let Ri = [ai1 ai2 · · · ain] be the ith row of A. Suppose that k ·Ri

is added to the pth row Rp = [ap1 ap2 · · · apn], where k is any constant and i 6= p.

In this way we obtain a matrix B whose rows are the same as the rows of A except

possibly for the pth row which is [kai1 + ap1 kai2 + ap2 · · · kain + apn]. The cofactors

Apj and Bpj are the same for all j, so

detB = (kai1 + ap1)Bp1 + (kai2 + ap2)Bp2 + · · · (kain + apn)Bpn

= (kai1Bp1 + kai2Bp2 + · · · + kainBpn) + (ap1Bp1 + ap2Bp2 + · · · + apnBpn)

= k · detM + det A,

where M is the matrix obtained from A by replacing the pth row of A with the ith

row of A. Now, since M is a matrix with two equal rows, its determinant is zero. So,

detB = det A.

Property 7 If A and B are n × n matrices, then det AB = (detA)(det B).
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Example 13 Use the properties of determinants in evaluating the determinant of the

following matrix:

A =



















5 −2 0 −1

0 1 5 2

1 2 0 1

−3 1 −1 1



















Solution. At each stage, let Ri denote the ith row of the matrix begin considered.

Notice that if we formed a new matrix, B by replacing R1 of matrix A with R1 + R3

then the first row of B will have three zeros. By Property 6, detA = detB, so we will

compute detA by computing det B expanding by minors on the 1st row.

B =



















6 0 0 0

0 1 5 2

1 2 0 1

−3 1 −1 1



















det B = 6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 5 2

2 0 1

1 −1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 6 detD

Now we will form a new matrix F by replacing R3 of matrix D with −R1 + R3 and R2

of matrix D with −2R1 + R2 to get

F =













1 5 2

0 −10 −3

0 −6 −1













.

Since det D = detF ,

detA = detB = (6) detD = (6) detF = 6[(1)((−10)(−1)− (−3)(−6))− 0+ 0] = −48.

Notice that this is the same matrix as in Example 9.
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Exercises

1. Show that det A = detAT for the matrix A =













1 −4 5

3 2 −1

−2 6 7













.

2. Find the determinant of each matrix given below. Note that the idea here is to

try to reduce each matrix to a matrix having two zeros in some row or column

and then expanding by minors along that row or column.

A =













6 −4 3

5 0 10

−2 −2 4













B =













4 3 −6

−1 2 −5

7 −1 1













B.5 Invertible Matrices

Definition 10 The identity matrix of order n, written In, or simply I is the square

matrix [aij ]nn such that aii = 1 and aij = 0for i 6= j. In other words, the identity

matrix is the matrix with ones along the principal diagonal and zeros elsewhere.

For example, the identity matrix of order 4 is the following matrix:

I3 =



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















If A is any m × n matrix and B is any n × s matrix we have that

A · I = A and I · B = B.

Definition 11 A matrix A is called invertible if there is another matrix B so that the

product matrices AB and BA are both the identity matrix. The matrix B is called the

inverse matrix of A, and is usually written A−1.
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It turns out that A is not invertible unless A is a square matrix whose determinant is

nonzero. If A is a square matrix and det A 6= 0, there is a formula for the entries of

A−1. For example, for 2 × 2 matrices:

if A =





a b

c d



 then A−1 =





d/det A −b/detA

−c/det A a/det A



.

Here is the explicit formula for the inverse matrix of larger matrices: the (i, j) entry of

A−1 is Aji/det A, where Aji is the cofactor of the (j, i) entry of A. Beware the switch

in the order of i and j ! For example, in the (1, 2) entry of the 2 × 2 example above,

−b is the cofactor A21 of the (2, 1) entry of A.

Example 14 Find the inverse of the following matrix:

A =













1 5 6

−3 4 8

2 −7 3













.

Solution. We have seen in Example 8 that detA = 271. We need to compute each

cofactor:

A11 =

∣

∣

∣

∣

∣

∣

4 8

−7 3

∣

∣

∣

∣

∣

∣

= 68 A12 = −

∣

∣

∣

∣

∣

∣

−3 8

2 3

∣

∣

∣

∣

∣

∣

= 25 A13 =

∣

∣

∣

∣

∣

∣

−3 4

2 −7

∣

∣

∣

∣

∣

∣

= 13

A21 = −

∣

∣

∣

∣

∣

∣

5 6

−7 3

∣

∣

∣

∣

∣

∣

= −57 A22 =

∣

∣

∣

∣

∣

∣

1 6

2 3

∣

∣

∣

∣

∣

∣

= −9 A23 = −

∣

∣

∣

∣

∣

∣

1 5

2 −7

∣

∣

∣

∣

∣

∣

= 17

A31 =

∣

∣

∣

∣

∣

∣

5 6

4 8

∣

∣

∣

∣

∣

∣

= 16 A32 = −

∣

∣

∣

∣

∣

∣

1 6

−3 8

∣

∣

∣

∣

∣

∣

= −26 A33 =

∣

∣

∣

∣

∣

∣

1 5

−3 4

∣

∣

∣

∣

∣

∣

= 19

We use the formula to get that the inverse of A is then

A−1 =













68
271

−57
271

16
271

25
271

−9
271

−26
271

13
271

17
271

19
271













.

The most common use of the inverse matrix is in solving equations. A system of

n equations in n unknown variables can be written as A · x = b, where A is an n × n
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matrix and both x and b are (n × 1) column vectors. Multiplying both sides on the

left by A−1 gives the solution:

x = (A−1 · A) · x = A−1 · (A · x) = A−1 · b

For example, to find the solution to the equations

3x + 5y = 7

2x + 4y = 5,

we form

x =





x

y



 , b =





7

5



 , A =





3 5

2 4



 , and A−1 =





2 −2.5

−1 1.5



.

We then get the solution x = 1.5, y = 0.5 from





x

y



 = A−1 · b =





2 −2.5

−1 1.5



 ·





7

5



 =





14 − 12.5

−7 + 7.5



 =





1.5

0.5



.

Exercises

1. Find the inverse of the matrix A =













−1 4 5

3 6 2

4 −3 0













.

2. (a) Show that the matrix A =





2 −3

5 −7



 is invertible and find its inverse.

(b) Use the result in (a) to find the solution of the system of equations

2x1 − 3x2 = 4

5x1 − 7x2 = −3

(c) Use the result in (a) to find the solution of the system of equations

2x1 − 3x2 = 5

5x1 − 7x2 = 2
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3. Find all numbers r such that the matrix A =













2 4 2

1 r 3

1 2 1













is invertible.

4. Find all numbers r such that the matrix A =













2 4 2

1 r 3

1 1 1













is invertible.

B.6 Cramer’s Rule

In this section we exhibit formulas in terms of determinants for the entries in the

solution vector of a square linear system A · x = b, where A is an invertible matrix (in

particular, detA 6= 0). The formulas are contained in the following theorem:

Theorem 2 Cramer’s Rule. Consider the linear system A · x = b, where A = [aij ]nn

is an n × n invertible matrix,

x =













x1

...

xn













, and b =













b1

...

bn













.

Let Bp be the n × n matrix formed from A by replacing the pth column vector of A by

the column vector b. Then the linear system has the unique solution given by

x1 =
detB1

detA
, x2 =

detB2

detA
, · · · , xn =

detBn

det A
.

Proof of Cramer’s Rule: If (y1, y2, · · · , yn) is a solution of the given linear system,

then

a11y1 + a12y2 + · · · + a1nyn = b1,

a21y1 + a22y2 + · · · + a2nyn = b2,

...
...

...
...

...

an1y1 + an2y2 + · · · + annyn = bn.

(1)

43



We multiply the first equation by A11, the second equation by A21, . . . , the nth equation

by An1 and add the resulting equations to obtain the equation

(a11A11 + a21A21 + · · · an1An1)y1 + (a12A11 + a22A21 + · · · an2An1)y2 +

· · · + (a1nA11 +a2nA21 + · · · annAn1)yn = b1A11 +b2A21 + · · ·+bnAn1.

Notice that the coefficients of yj for j 6= 1 are zero (why?), so this equation can be

written

(det A)y1 = detB1. (2)

In an analogous manner, we also deduce from (1) that

(det A)yp = detBp for each 2 ≤ p ≤ n. (3)

From (2) and (3), and because det A 6= 0 we get

yp =
det Bp

det A
for each 1 ≤ p ≤ n. (4)

This proves that if (y1, y2, · · · , yn) is a solution of the given linear system, then the

values of yp must be the unique numbers shown in (4).

To complete the proof, we must show that (4) is a solution of the given system; that

is, we must show that (4) implies (1). But this follows from the fact that all the above

steps are reversible.

Example 15 Solve the system

x1 + 3x2 – 2x3 = 11,

4x1 – 2x2 + x3 = -15,

3x1 + 4x2 – x3 = 3

by Cramer’s rule.

Solution. Using the notation in the above theorem we find that

detA =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 3 −2

4 −2 1

3 4 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −25, detB1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

11 3 −2

−15 −2 1

3 4 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 50,
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detB2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 11 −2

4 −15 1

3 3 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −25, detB3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

11 3 11

−15 −2 −15

3 4 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 125.

Hence

x1 = 50
−25 = −2,

x2 = −25
−25 = 1,

x3 = 125
−25 = −5.

Exercises

1. Solve the given system of linear equations by Cramer’s rule.

x1 + 2x2 = −2

x1 + 5x2 = −2

2. Solve the given system of linear equations by Cramer’s rule. Notice that the

coefficient matrix is from a previous exercise.

x1 + 2x2 − x3 = −2

2x1 + x2 + x3 = 1

3x1 − x2 + 5x3 = 1

3. Solve the given system of linear equations by Cramer’s rule.

3x1 + 2x2 − x3 = 1

x1 − 4x2 + x3 = −2

5x1 + 2x2 = 1

4. Tell why Cramer’s rule does not apply to the following system of linear equations.

Then solve the given system by elementary row operations on its augmented

matrix.
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11x1 + 5x2 − 5x3 = −8

2x1 + x2 − x3 = −2

7x1 + 3x2 − 3x3 = −4

B.7 Eigenvalues

Let us define the eigenvalues and eigenvectors of an n×n matrix A. Let x be an n× 1

column matrix, (also called a column vector), and λ a number. Then if

A · x = λx, x 6= 0,

x is called an eigenvector of A for the eigenvalue λ. In other words, x is an eigenvector

of A if and only if the result of A acting on x is to multiply by a constant — and the

constant is the eigenvalue. For example,





1 −3

2 6



 ·





3

−2



 =





9

−6



 = 3





3

−2



 .

So





3

−2



 is an eigenvector with eigenvalue 3.

We may rewrite the eigenvalue equation A · x = λx in the form

(A − λI) · x = 0,

where the 0 on the right hand side stands for a column vector with all entries 0. It is

not hard to see that if x 6= 0 then (A−λI) is not invertible. Indeed, if it were invertible

we would have the contradiction

x = (A − λI)−1 · 0 = 0.

We conclude: if λ is an eigenvalue of A, then we must have

det(A − λI) = 0.
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Det(A − λI) is called the characteristic polynomial of the matrix A. When the deter-

minant is multiplied out, the characteristic polynomial is seen to be a polynomial of

degree n in λ.

This leads to the following way to find the eigenvalues of a matrix A: they are the

roots of the characteristic polynomial. For example,

A =





1 −3

2 6



 has det(A − λI) = det





1 − λ −3

2 6 − λ



 = λ2 − 7λ + 12.

Factoring the characteristic polynomial as

λ2 − 7λ + 12 = (λ − 3)(λ − 4) = 0,

we see that the eigenvalues of A are λ = 3 and λ = 4. In fact, we have already seen

that λ = 3 is an eigenvalue, and λ = 4 is an eigenvalue because

A ·





1

−1



 =





4

−4



 = 4





1

−1



 .

We will see later how to find eigenvectors for the eigenvalues of A. The point is that

we don’t have to find any eigenvectors in order to find the eigenvalues of a matrix.

In general, any polynomial of degree n has at most n roots. The characteristic

polynomial is no exception. This means that an n × n matrix can have at most n

eigenvalues.

Sometimes we have a double eigenvalue. For example, if

A =





5 4

−1 1



 then det(A − λI) = det





5 − λ 4

−1 1 − λ





and the characteristic polynomial is

λ2 − 6λ + 9 = (λ − 3)2.

Here λ = 3 is a double eigenvalue (and in fact is the only eigenvalue of A).

If we know the eigenvalues of a matrix A, we can determine the eigenvalues of all

powers of A, i.e., the eigenvalues of A2, A3, · · · . Let x be an eigenvector of A, with

eigenvalue λ. Then
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A2 · x = A · (A · x) = A · (λx) = λ(A · x) = λ2x.

Similarly, for any positive integer k,

Ak · x = λkx.

This important result tells us that the eigenvectors of A are also the eigenvectors of Ak,

but the eigenvalues for Ak are λk instead of λ.

Exercises

1. Show that the characteristic polynomial of the following matrix

A =













5 1 1

2 4 1

−6 −3 0













is λ3 − 9λ2 + 27λ − 27 = (λ − 3)3. (λ = 3 is a triple eigenvalue of A.)

2. Let A =





7 5

−10 −8



.

(a) Find the eigenvalues of A.

(b) Find the eigenvalues of A2 by doing the matrix product B = A·A and finding

the eigenvalues of B.

(c) Find the eigenvalues of A5.

3. Find the eigenvalues of the matrix













−2 0 0

−5 −2 −5

5 0 3













.
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B.8 Eigenvectors

Suppose that we have found out that λ is an eigenvalue of the matrix A. How do we

obtain the eigenvectors that go with the eigenvalue λ? The equation satisfied by the

eigenvectors is

(A − λI) · x = 0.

We can think of this equation as a system of n equations in n unknowns. To solve

this system of linear equations, we saw in section 1 that it is easiest to use elementary

row operations. In fact, that is how computer programs do it! For the matrix A =




1 −3

2 6



 we have already found that the eigenvalues are λ = 3 and λ = 4. The

computation of the eigenvectors proceeds as shown below:

For λ = 3 we have

A − λI =





1 −3

2 6



 − 3





1 0

0 1



 =





−2 −3

2 3



.

So we are looking for the vector x which satisfies the equation





−2 −3

2 3



 ·





x1

x2



 =





0

0



.

By row reduction we get





−2 −3

0 0



 ·





x1

x2



 =





0

0



,

so x =





3

−2



 is an eigenvector for λ = 3. Similarly, for λ = 4 we have





−3 −3

2 2



 ·





x1

x2



 =





0

0



 or





1 1

0 0









x1

x2



 =





0

0



 so that x =





1

−1



 is an eigenvector for λ = 4.
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Note that the eigenvectors are defined only up to a non-zero constant.

(N.B.: the zero vector does not count as an eigenvector of anything).

A basic fact about the number of eigenvectors is that a k-fold eigenvalue has associ-

ated with it at most k “independent” eigenvectors. (Every eigenvalue has at least one

eigenvector, because an eigenvector is need to define an eigenvalue). However, it can

have fewer than k “independent” eigenvectors.

It turns out that a 2× 2 matrix with a double eigenvalue either has only one eigen-

vector, or else it is a multiple of the identity, A = λI. In the latter case, every vector

(except 0) is an eigenvector. When we count two eigenvectors, we appeal to the fact

that any vector can be written as a linear combination of two independent vectors. For

example,





x1

x2



 = x1





1

0



 + x2





0

1



.

Exercises

1. In the last section, the matrix





5 4

−1 1



 was found to have a double eigenvalue

λ = 3. Show that it has only one eigenvector, x =





2

−1



.

2. Find the eigenvalues and eigenvectors of the matrices





3 2

−1 0



 and





1 1

6 2



.

3. Find all the eigenvectors for the triple eigenvalue λ = 3 of the matrix

A =













5 1 1

2 4 1

−6 −3 0













.

4. Find the eigenvalues and eigenvectors of the the matrix
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A =













1 0 0

−8 4 −6

8 1 9













.

5. Find the characteristic polynomial, the eigenvalues, and the corresponding eigen-

vectors of the matrices A, A2 and A5 where A =





−1 −2

4 5



.

B.9 Final Remarks

Let us look at some of the other results used in Keller’s Population Projection.

(1) When an n × n matrix A has n eigenvectors (say x1, . . . , xn with associated

eigenvalues λ1, · · · , λn), any vector y can be written as a linear combination of those

eigenvectors:

y = a1x1 + a2x2 + · · · + anxn.

Now let A act on y k times: Aky = A · A · · ·A · y. Then we get

Ak · y = (λk
1a1)x1 + (λk

2a2)x2 + · · · + (λk
nan)xn.

This gives us a way to calculate the effect of Ak on the vector y, and avoids the need

for calculating the matrix Ak, as is done in the UMAP supplement, p.5.

(2) When there is one eigenvalue λ1 that is larger in absolute value then any other

(|λ1| > |λi| for all i 6= 1), and k large enough, Ak · y looks like a multiple of the

eigenvector x1 of λ1. (Recall that eigenvalues may be positive, negative, or complex,

so that you could have two eigenvalues that are equal in absolute value without being

numerically equal).

To see this, suppose that a1 6= 0 in (1) above. As k is allowed to get larger, the

term in x1 gets larger relative to the others in absolute value, and Ak · y looks more

and more like a multiple of x1:
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Ak · y ∼= λka1x1.

You will encounter this type of behavior in calculations with the Leslie matrix, which

has a positive λ1. It justifies the following assertions on p.10 of the UMAP:

i. The age distribution vectors Ak · y eventually behave like a multiple of a fixed

vector (the eigenvector x1). Given the initial population y, we can estimate the

population after k generations, because it is approximately λk
1 times a1x1, where

y = a1x1 + · · · anxn.

ii. The population eventually tends to grow at a rate proportional to itself, being

multiplied by λ1 every generation. That is, over long time intervals the popu-

lation will approximately satisfy the differential equation dy/dt = λ1y, and the

population will increase exponentially.

(3) If an n × n matrix has n different eigenvectors, then it can be diagonalised. This

has the following meaning. Let us order the eigenvectors by labeling them x1, . . . , xn,

and the corresponding eigenvalues λ1, · · · , λn (it is possible for some of the λi to be

equal). Make up a matrix P such that the first column is x1, the second column is x2,

. . . and the nth column is xn. Make up the diagonal matrix

D =



















λ1 0

λ2

. . .

0 λn



















Then it is true that A · P = P · D. This matrix equation is nothing more than all the

equations

A · xi = λixi

combined into a single equation. Multiplying on the left by P−1 gives

P−1AP = D and A = PDP−1.
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We can do this because P−1 exists whenever A has n eigenvectors. (There is a gener-

alisation for matrices with fewer than n eigenvectors, but the matrix that replaces D is

not quite diagonal).

From A = PDP−1 we have by k-fold multiplication, using P−1P = I,

Ak = (PDP−1)(PDP−1) · · · (PDP−1) = PD(P−1P )D(P−1P )D · · ·DP−1,

and by cancelling we get Ak = PDkP−1. The matrix Dk is calculated easily: it is the

diagonal matrix with entries λk
1, λk

2 . . . , λk
n. This gives us an easy way to calculate

high powers of A.

Now suppose that one eigenvalue λ1 is larger in absolute value then all the others.

For large k, this means that λk
i /λ

k
1 ≈ 0 for all the other eigenvalues λi. Therefore

Dk =



















λk
1 0

λk
2

. . .

0 λk
n



















≈ λk
1



















1 0

λk
2/λ

k
1

. . .

0 λk
n/λk

1



















≈

λk
1

























1 0

0

0

. . .

0 0

























This means that Ak = P · Dk · P−1 is approximately λk
1 times the matrix

M = P ·

























1 0

0

0

. . .

0 0

























· P−1.

This proves the assertion on p.16 of the UMAP supplement:

lim
k→∞

Ak/λk
1 = M .
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If u is the first column of P (an n× 1 matrix) and v is the first row of P−1 (a 1×n

matrix), then the matrix product uv is an n × n matrix, and in fact is the matrix M .

The argument presented on pp.15-17 of the UMAP supplement is not much different

from the one we just gave, but provides more discussion of u and v.
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