Partial Solutions to Review Problems for Exam 1

- (1) The first inequality gives us the set which is the union of the intervals $(-\infty, 1)$ and $(3, \infty)$. The second inequality gives us the set which is just the interval [2, 4]. The intersection of these two sets gives us the answer to the given question. This answer is the interval (3, 4].
- (2)(a) We have to show that the inequalities $x_1 \leq x_2 \leq -5$ imply $f(x_1) \leq f(x_2)$. The assumption $x_1 \leq x_2 \leq -5$ gives us $5 \leq -x_2 \leq -x_1$. Since f(x) is odd and increasing on $[5, \infty)$, we conclude $-f(x_2) = f(-x_2) \leq f(-x_1) = -f(x_1)$. Therefore, $f(x_1) \leq f(x_2)$.
- (2)(b) We have to show that the inequalities $x_1 \leq x_2 \leq -5$ imply $f(x_1) \geq f(x_2)$. The assumption $x_1 \leq x_2 \leq -5$ gives us $5 \leq -x_2 \leq -x_1$. Since f(x) is even and increasing on $[5, \infty)$, we conclude $f(x_2) = f(-x_2) \leq f(-x_1) = f(x_1)$. Therefore, $f(x_1) \geq f(x_2)$.
- (3) To begin with, $2x^2 8x 10 = 2(x^2 4x 5) = 2((x 2)^2 9)$. The minimum of $2x^2 8x 10$ occurs at the x which minimizes $(x 2)^2 9$. This particular x is the x that makes $(x 2)^2$ equal to 0. That x is 2. In other words, the minimum of $2x^2 8x 10$ occurs at x = 2, and that minimum is -18. The equation $0 = 2x^2 8x 10 = 2((x 2)^2 9)$ leads to $x 2 = \pm 3$, x = -1 and x = 5.
- (4) There are many choices for f(x) and g(x). The choices $f(x) = x^2$ and g(x) = x + 1 will work. Indeed, $(f \circ g)(x) = f(g(x)) = (x+1)^2$ does not equal $(g \circ f)(x) = g(f(x)) = x^2 + 1$ for general values of x.
- (5) The given equation is equivalent to $2\sin^2 x = 1 + \cos^2 x \sin^2 x = 1 + 1 \sin^2 x \sin^2 x$, which is equivalent to $\sin^2 x = 1/2$. We need to find all x in $[0, 2\pi]$ with the property $\sin x = \pm \sqrt{1/2} = \pm \sqrt{2}/2$. These x are $\pi/4$, $3\pi/4$, $5\pi/4$, $7\pi/4$.
- (6) The fact $\cos(\sin^{-1}x) = \sqrt{1-x^2}$ (see page 40 in the textbook) leads to $\sec(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$. If we modify the argument in the text that led to the second proof of $\cos(\sin^{-1}x) = \sqrt{1-x^2}$ on page 40, then we get the following: If $\theta = \tan^{-1}x$ then $\sec(\tan^{-1}x) = \sec\theta = \sqrt{1+\tan^2\theta} = \sqrt{1+x^2}$, where we took the positive square root because $\theta = \tan^{-1}x$ lies in $(-\pi/2,\pi/2)$ and $\sec\theta$ is positive in this interval. Now we use the fact $\sec(\tan^{-1}x) = \sqrt{1+x^2}$ to conclude $\cos(\tan^{-1}x) = \frac{1}{\sqrt{1+x^2}}$.
- (7) The given identity is equivalent to $\ln\left(\frac{x^2+7}{x^2+1}\right) = \ln\left(2^2\right)$. Since the ln function is one-to-one, we conclude $\frac{x^2+7}{x^2+1} = 2^2 = 4$. Consequently, $x^2 = 1$ and $x = \pm 1$.
- (8) The average velocity is $\frac{1}{3-1}\left(\frac{3}{1+3^2}-\frac{1}{1+1^2}\right)=-0.1$ feet per second.
- (9) We will use the letters (a) (m) to label these 13 limit problems.

(a) If we take the reciprocal of $\lim_{u\to 0} \frac{\sin u}{u} = 1$ then the limit laws give us $\lim_{u\to 0} \frac{u}{\sin u} = 1$. If u = 7x then $x\to 0$ is the same as $u\to 0$. Consequently,

$$\lim_{x \to 0} \frac{x}{\sin(7x)} = \frac{1}{7} \lim_{x \to 0} \frac{7x}{\sin(7x)} = \frac{1}{7} \lim_{u \to 0} \frac{u}{\sin u} = \frac{1}{7} \cdot 1 = \frac{1}{7}.$$

(b) Imitating the method in (a), we set u = 5x, v = 7x and note that $x \to 0$ is the same as $u \to 0$ and the same as $v \to 0$. Consequently,

$$\lim_{x \to 0} \frac{\sin(5x)}{\sin(7x)} = \lim_{x \to 0} \frac{5}{7} \cdot \frac{\sin(5x)}{5x} \cdot \frac{7x}{\sin(7x)} = \frac{5}{7} \cdot \lim_{u \to 0} \frac{\sin u}{u} \cdot \lim_{v \to 0} \frac{v}{\sin v} = \frac{5}{7} \cdot 1 \cdot 1 = \frac{5}{7}.$$

(c)
$$\lim_{x \to 0} \frac{x}{\tan x} = \lim_{x \to 0} \frac{x}{\sin x} \cdot \cos x = 1 \cdot 1 = 1.$$

(d) We are dealing with nonzero values of x. The inequality $|\cos(x^{-3})| \leq 1$ leads to $|x| \cdot |\cos(x^{-3})| \leq |x| \cdot 1$, which is $|x\cos(x^{-3})| \leq |x|$. This last inequality can be rewritten

$$-|x| \le x \cos(x^{-3}) \le |x|.$$

Since $\lim_{x\to 0} -|x| = 0 = \lim_{x\to 0} |x|$, the Squeeze Theorem implies $\lim_{x\to 0} x\cos(x^{-3}) = 0$.

(e) When x approaches 5 from the right, we always have x > 5, which is the same as x - 5 > 0. The inequality x - 5 > 0 allows us to write |x - 5| = x - 5. Now we know $\lim_{x \to 5^+} \frac{x - 5}{|x - 5|} = \lim_{x \to 5^+} \frac{x - 5}{x - 5} = \lim_{x \to 5^+} 1 = 1$.

(f) When x approaches 5 from the left, we always have x < 5, which is the same as x-5 < 0. The inequality x-5 < 0 allows us to write |x-5| = -(x-5). Now we know $\lim_{x \to 5^-} \frac{x-5}{|x-5|} = \lim_{x \to 5^-} \frac{x-5}{-(x-5)} = \lim_{x \to 5^-} -1 = -1$.

(g) The general fact $\lim_{x\to a^+} \frac{1}{x-a} = \infty$ leads to

$$\lim_{x\to 3^+}\frac{x^2-20}{x^2-9}=\lim_{x\to 3^+}\left(\frac{x^2-20}{x+3}\cdot\frac{1}{x-3}\right)=\lim_{x\to 3^+}\frac{x^2-20}{x+3}\cdot\lim_{x\to 3^+}\frac{1}{x-3}=-\frac{11}{6}\infty=-\infty.$$

(h) The general fact $\lim_{x\to a^-} \frac{1}{x-a} = -\infty$ leads to

$$\lim_{x \to 3^{-}} \frac{x^2 - 20}{x^2 - 9} = \lim_{x \to 3^{-}} \left(\frac{x^2 - 20}{x + 3} \cdot \frac{1}{x - 3} \right) = \lim_{x \to 3^{-}} \frac{x^2 - 20}{x + 3} \cdot \lim_{x \to 3^{-}} \frac{1}{x - 3} = -\frac{11}{6} (-\infty) = \infty.$$

(i)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 + 2x - 8} = \lim_{x \to 2} \frac{(x - 2)(x + 3)}{(x - 2)(x + 4)} = \lim_{x \to 2} \frac{x + 3}{x + 4} = \frac{5}{6}.$$

(j)
$$\lim_{x \to 2} \frac{x^3 - 2x^2 + x - 2}{x^3 - x^2 - x - 2} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 1)}{(x - 2)(x^2 + x + 1)} = \lim_{x \to 2} \frac{x^2 + 1}{x^2 + x + 1} = \frac{5}{7}$$

(k) A correct rationalization starts with

$$\lim_{x \to 3} \frac{4 - \sqrt{5x + 1}}{5 - \sqrt{8x + 1}} = \lim_{x \to 3} \frac{(4 - \sqrt{5x + 1})(4 + \sqrt{5x + 1})(5 + \sqrt{8x + 1})}{(5 - \sqrt{8x + 1})(4 + \sqrt{5x + 1})(5 + \sqrt{8x + 1})}.$$

Using the basic identity $(a - b)(a + b) = a^2 - b^2$ twice, we get

$$\lim_{x \to 3} \frac{4 - \sqrt{5x + 1}}{5 - \sqrt{8x + 1}} = \lim_{x \to 3} \frac{(16 - (5x + 1))(5 + \sqrt{8x + 1})}{(25 - (8x + 1))(4 + \sqrt{5x + 1})} = \lim_{x \to 3} \frac{5(3 - x)(5 + \sqrt{8x + 1})}{8(3 - x)(4 + \sqrt{5x + 1})}$$
$$= \lim_{x \to 3} \frac{5(5 + \sqrt{8x + 1})}{8(4 + \sqrt{5x + 1})} = \frac{5(5 + 5)}{8(4 + 4)} = \frac{25}{32}.$$

(1)
$$\lim_{x \to 3} \frac{4 - \sqrt{5x + 1}}{6 - 2x} = \lim_{x \to 3} \frac{(4 - \sqrt{5x + 1})(4 + \sqrt{5x + 1})}{(6 - 2x)(4 + \sqrt{5x + 1})} = \lim_{x \to 3} \frac{(16 - (5x + 1))}{(6 - 2x)(4 + \sqrt{5x + 1})} = \lim_{x \to 3} \frac{5}{2(3 - x)(4 + \sqrt{5x + 1})} = \lim_{x \to 3} \frac{5}{2(4 + \sqrt{5x + 1})} = \frac{5}{16}.$$

(m)
$$\lim_{x \to 0} \frac{1 - \sec x}{x^2} = \lim_{x \to 0} \frac{(1 - \sec x)(1 + \sec x)}{x^2(1 + \sec x)} = \lim_{x \to 0} \frac{(1 - \sec^2 x)}{x^2(1 + \sec x)} = \lim_{x \to 0} \frac{(-\tan^2 x)}{x$$

- (10) We must have $2c = f(1) = \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{8}{1+x^2} = 4$. Now we know c = 2. The identity $4 = 2c = f(1) = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (bx + c) = b + c = b + 2$ gives b = 2. Finally, we get a = -2 from $a + 2 = a + b = f(-1) = \lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} (bx + c) = -b + c = -2 + 2 = 0$. One should check that the identities $\lim_{x \to -1} f(x) = f(-1)$ and $\lim_{x \to 1} f(x) = f(1)$ do hold for this choice of a, b, c.
- (11) Let us use the auxiliary function $f(x) = x \cos x$. We verify that f(x) is continuous on $[0, \pi/2]$ and that we have $f(0) < 0 < f(\pi/2)$. The Intermediate Value Theorem tells us that f(c) = 0 is true for some c in the interval $(0, \pi/2)$. This c is a solution of $x = \cos x$.
- (12) For each $\varepsilon > 0$ we can choose $\delta = \varepsilon/3 > 0$ and verify that the condition $0 < |x-2| < \delta$ implies $|(3x+4)-10| = |3x-6| = 3|x-2| < 3\delta = \varepsilon$.

(13) Using
$$f(x) = \frac{1}{x^2}$$
, $f(x+h) = \frac{1}{(x+h)^2}$ we get

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$$

$$= \lim_{h \to 0} \frac{x^2 - (x+h)^2}{h(x+h)^2 x^2}$$

$$= \lim_{h \to 0} \frac{-2xh - h^2}{h(x+h)^2 x^2}$$

$$= \lim_{h \to 0} \frac{-2x - h}{(x+h)^2 x^2} = \frac{-2x}{x^2 x^2} = -2x^{-3}.$$

(14) If t is the time when the outfielder caught the ball, then we must have $-16t^2+12t+4=6$. The two solutions are t=1/4 seconds (when the ball is on its way up) and t=1/2 seconds (when the ball is on its way down). I may have seen once a pitcher who caught a batted ball on its way up, but an outfielder expects to catch a fly ball on its way down. If the catch was routine then the answer to the first question is t=1/2 seconds. The maximum height occurs when the derivative of the height function is zero. This corresponds to t=3/8 seconds and the maximum height $-16(3/8)^2+12(3/8)+4$ feet.

(15) We see $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} (2x+3) = 2+3=5=3+2 = \lim_{x\to 1^+} (3x+2) = \lim_{x\to 1^+} f(x)$. This implies $\lim_{x\to 1} f(x) = 5$. We also see f(1) = 3+2=5. Now we have $\lim_{x\to 1} f(x) = f(1)$, which proves continuity at 1, the only point where continuity could possibly be in doubt. Now we will show that f'(1) does not exist. If f'(1) did exist, then $\lim_{h\to 0} \frac{f(1+h)-f(1)}{h}$ would exist, and this would imply

$$\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{+}} \frac{f(1+h) - f(1)}{h},$$

which is the same as

$$\lim_{h \to 0^{-}} \frac{f(1+h) - 5}{h} = \lim_{h \to 0^{+}} \frac{f(1+h) - 5}{h}.$$

We get a contradiction because the computations

$$\lim_{h \to 0^{-}} \frac{f(1+h) - 5}{h} = \lim_{h \to 0^{-}} \frac{(2(1+h) + 3) - 5}{h} = \lim_{h \to 0^{-}} \frac{2h}{h} = 2$$

and

$$\lim_{h \to 0^+} \frac{f(1+h) - 5}{h} = \lim_{h \to 0^+} \frac{(3(1+h) + 2) - 5}{h} = \lim_{h \to 0^+} \frac{3h}{h} = 3$$

tell us that the earlier assertion

$$\lim_{h \to 0^{-}} \frac{f(1+h) - 5}{h} = \lim_{h \to 0^{+}} \frac{f(1+h) - 5}{h}$$

implies the conclusion 2 = 3, which is false. A quick way to visualize the nondifferentiability of this f(x) is to note the geometry at 1 on the x-axis. The slope from the right is 3, but the slope from the left is 2. This produces a corner at 1.

(16) Since f(x) is differentiable at 2, we conclude that f(x) is continuous at 2. This implies $5 = \lim_{x \to 2^-} (2x+1) = \lim_{x \to 2^-} f(x) = f(2) = 4a+b$. This gives us the equation 5 = 4a+b, which relates a and b. As in problem (15), we can visualize what is going on at the point 2 on the x-axis. The slope from the right is 2ax at x = 2, which is 4a. The slope from the left is 2. To avoid a corner, we need 4a = 2. What follows is a more rigorous analysis that also leads to 4a = 2. The differentiability of f(x) at 2 implies

$$\lim_{h \to 0^{-}} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0^{+}} \frac{f(2+h) - f(2)}{h}.$$

The above, the fact f(2) = 4a + b = 5 and the definition of f give

$$\lim_{h \to 0^{-}} \frac{(2(2+h)+1)-5}{h} = \lim_{h \to 0^{+}} \frac{(a(2+h)^{2}+b)-5}{h},$$

which simplifies to

$$\lim_{h \to 0^{-}} \frac{2h}{h} = \lim_{h \to 0^{+}} \frac{4ah + ah^{2}}{h}.$$

We used 4a + b = 5 in this simplification. Further simplification leads to $\lim_{h\to 0^-} 2 = \lim_{h\to 0^+} (4a+ah)$, which is 2=4a, as promised earlier. Solving the system 5=4a+b and 2=4a, we get b=3 and a=1/2.

(17) The Product Rule, Quotient Rule, Chain Rule and other simpler rules give

$$\frac{d}{dx}\left[(x^3+x)^5(1+\cos x)^9\right] = 5(x^3+x)^4(3x^2+1)(1+\cos x)^9 + (x^3+x)^59(1+\cos x)^8(-\sin x)^8$$

$$\frac{d}{dx} \left[\frac{\tan x}{1 + e^{4x}} \right] = \frac{(\sec^2 x)(1 + e^{4x}) - 4e^{4x} \tan x}{(1 + e^{4x})^2}$$

$$\frac{d}{dx} \left[\sin \left(\sqrt{x^4 + x^2 + 3} \right) \right] = \frac{1}{2} (x^4 + x^2 + 3)^{-1/2} (4x^3 + 2x) \cos \left(\sqrt{x^4 + x^2 + 3} \right)$$

$$\frac{d}{dx} \left[\sec(e^x + \sqrt{x}) \right] = (e^x + (1/2)x^{-1/2}) \sec(e^x + \sqrt{x}) \tan(e^x + \sqrt{x}).$$

(18) If $f(x) = (3 + x^{-3})^5$ then $f''(x) = 60x^{-5}(3 + x^{-3})^4 + 180x^{-8}(3 + x^{-3})^3$. If $g(x) = \tan(7x)$ then $g''(x) = 98\sec^2(7x)\tan(7x)$. If $h(x) = (e^x + \cos x)^{-1/2}$ then

$$h''(x) = \frac{3}{4}(e^x + \cos x)^{-5/2}(e^x - \sin x)^2 - \frac{1}{2}(e^x + \cos x)^{-3/2}(e^x - \cos x).$$

If
$$k(x) = e^{x^2 + 4x + 3}$$
 then $k''(x) = ((2x + 4)^2 + 2)e^{x^2 + 4x + 3}$.

(19) If
$$f(x) = \cos(2x)$$
 then $f'(x) = -2\sin(2x)$, $f''(x) = -4\cos(2x)$, $f^{(3)}(x) = 8\sin(2x)$, $f^{(4)}(x) = 16\cos(2x)$.

(20) The identity $0 = f''(x) = (4x^2 - 2)e^{-x^2}$ gives the solutions $x = \pm 2^{-1/2}$. The identity $0 = g''(x) = \frac{6x^2 - 2}{(1+x^2)^3}$ gives the solutions $x = \pm 3^{-1/2}$.