Partial solutions to the Math 151 review problems for Exam 2

These are not complete solutions. They are only intended as a way to check your work.

(1)(a) The derivative is
$$-\frac{(\ln 10)10^{\arccos x}}{\sqrt{1-x^2}}$$

(1)(b) The derivative is
$$\frac{3x^2 + 1}{(\ln 5)(x^3 + x + 1)\sqrt{1 - [\log_5(x^3 + x + 1)]^2}}$$
.

(1)(c) The derivative is
$$\frac{1}{(1+x^2)\tan^{-1}x}$$
.

(2)(a) The limit is -4. The L'Hôpital Rule (used twice) is much more efficient than using long division to factor $(x - 1)^2$ out of the numerator and denominator.

(2)(b) The L'Hôpital Rule (used three times) gives 1/3. In Math 152 you will learn a more efficient way to find this limit.

(3)(a)
$$\lim_{x \to 0^+} x^{1/10} \ln x = \lim_{x \to 0^+} \frac{\ln x}{x^{-1/10}} = \lim_{x \to 0^+} \frac{1/x}{-(1/10)x^{-11/10}} = \lim_{x \to 0^+} -10x^{1/10} = 0$$
.

(3)(b)
$$\lim_{x \to \infty} \frac{\ln x}{x^{1/10}} = \lim_{x \to \infty} \frac{1/x}{(1/10)x^{-9/10}} = \lim_{x \to \infty} 10x^{-1/10} = 0$$
.

(4) The horizontal asymptotes are $y = \frac{1}{\sqrt{7}}$ and $y = -\frac{1}{\sqrt{7}}$.

(5)(a) We get $f'(x) = -\frac{8x}{(x^2-4)^2}$, $f''(x) = \frac{24x^2+32}{(x^2-4)^3}$. The function is increasing on $(-\infty, -2)$ and (-2, 0). The function is decreasing on (0, 2) and $(2, \infty)$. The function is concave up on $(-\infty, -2)$ and $(2, \infty)$. The function is concave down on (-2, 2). There is a local maximum at x = 0. There are no local minima. There are no inflection points. The horizontal asymptote is y = 1. The vertical asymptotes are $x = \pm 2$.

(5)(b) We get
$$g'(x) = -\frac{x^2+4}{(x^2-4)^2}$$
, $g''(x) = \frac{x(2x^2+24)}{(x^2-4)^3}$. The function is not increasing
on any interval. The function is decreasing on $(-\infty, -2)$, $(-2, 2)$, $(2, \infty)$. The function is
concave up on $(-2, 0)$ and $(2, \infty)$. The function is concave down on $(-\infty, -2)$, $(0, 2)$. There
are no local extrema. There is an inflection point at $x = 0$. The horizontal asymptote is
 $y = 0$. The vertical asymptotes are $x = \pm 2$.

(6) The function is increasing on $(-\infty, -1)$, $(-2/\sqrt{5}, 2/\sqrt{5})$, $(1, \infty)$. The function is decreasing on $(-1, -2/\sqrt{5})$ and $(2/\sqrt{5}, 1)$. There are local maxima at x = -1 and $x = 2/\sqrt{5}$. There are local minima at $x = -2/\sqrt{5}$ and x = 1. The function is concave up

on $(-3/\sqrt{10}, 0)$ and $(3/\sqrt{10}, \infty)$. The function is concave down on $(-\infty, -3/\sqrt{10})$ and $(0, 3/\sqrt{10})$. The inflection points are at x = 0 and $x = \pm 3/\sqrt{10}$.

(7) We get $f'(x) = -\frac{x}{(x^2+1)^{3/2}}$ and $f''(x) = \frac{2x^2-1}{(x^2+1)^{5/2}}$. The function is concave up on $(-\infty, -1/\sqrt{2})$ and $(1/\sqrt{2}, \infty)$. The function is concave down on $(-1/\sqrt{2}, 1/\sqrt{2})$. The inflection points are at $x = \pm 1/\sqrt{2}$.

(8) The local maxima (which are also absolute maxima) occur at $-\pi/6 + 2n\pi$. The local minima (which are also absolute minima) occur at $5\pi/6 + 2n\pi$. The number *n* represents an arbitrary integer.

(9) Use $x^2 = |x|^2 = |x| \cdot |x| = |x|\sqrt{x^2}$ to obtain the formula as it is usually written.

(10) The absolute minimum is at $x = -\sqrt{2}$. The absolute maximum is at x = -1.

(11) The derivative is $(\ln x)^x (\ln(\ln x) + 1/\ln x)$.

(12) The slope of the tangent is -50/111. In order to appreciate the usefulness of implicit differentiation, try the following cumbersome alternative method: Solve for x, find the derivative dx/dy, take the reciprocal of this derivative evaluated at y = 2.

(13) The linearization is L(x) = 2 + x/27. The linearization is greater than f(x) when x is close to 27 but $x \neq 27$.

(14) The volume increases by approximately 0.003 percent. The surface area increases by approximately 0.002 percent.

(15) If R is the radius, V is the volume and A is the area, then the formulas $V = (4/3)\pi R^3$ and $A = 4\pi R^2$ lead to $\frac{12}{5} = \frac{dV/dt}{dA/dt} = \frac{4\pi R^2 (dR/dt)}{8\pi R (dR/dt)} = \frac{R}{2}$. We are giving you all of the details of the answer because forgetting the (dR/dt) in the Chain Rule would lead to the same correct answer R = 24/5 inches. Getting the right final answer does not guarantee that the method is correct.

(16) We can use thin rectangles of width 1/n with right upper vertex on the curve $y = x^2$. The total area of these rectangles is

$$\sum_{j=1}^{n} \frac{1}{n} \left(\frac{j}{n}\right)^2 = \frac{1}{n^3} \sum_{j=1}^{n} j^2 = \frac{1}{n^3} \left(\frac{n(n+1)(2n+1)}{6}\right) = \frac{1}{6} \cdot \frac{n+1}{n} \cdot \frac{2n+1}{n}.$$

This approaches the correct area 1/3 as n approaches infinity.

(17) We use $f(x) = x^2 - 2$. If $x_0 = 2$ then $x_1 = 3/2$ and $x_2 = 17/12$.

(18)
$$f(x) = \frac{x^5}{20} - \frac{x^3}{6} + Cx + D$$
 for any C and D.

(19) We get

$$f'(x) = (2/3)x^{-1/3}(1-x^2)(1-7x^2)$$

and

$$f''(x) = (2/9)x^{-4/3}(77x^4 - 40x^2 - 1).$$

The function is increasing on $(-1, -1/\sqrt{7})$, $(0, 1/\sqrt{7})$, $(1, \infty)$. The function is decreasing on $(-\infty, -1)$, $(-1/\sqrt{7}, 0)$, $(1/\sqrt{7}, 1)$. There are local maxima at $x = \pm 1/\sqrt{7}$. There are local minima (which are absolute minima) at ± 1 and 0. There are inflection points at

$$x = \pm \sqrt{\frac{20 + \sqrt{477}}{77}}$$

The function is concave up on

$$\left(-\infty, -\sqrt{\frac{20+\sqrt{477}}{77}}\right) \quad , \quad \left(\sqrt{\frac{20+\sqrt{477}}{77}}, \infty\right).$$

The function is concave down on

$$\left(-\sqrt{\frac{20+\sqrt{477}}{77}},0\right)$$
, $\left(0,\sqrt{\frac{20+\sqrt{477}}{77}}\right)$.

(20) We get $f'(x) = \frac{1-x^2}{(1+x^2)^2}$ and $f''(x) = \frac{x(2x^2-6)}{(1+x^2)^3}$. The function is increasing on (-1, 1). The function is decreasing on $(-\infty, -1)$ and $(1, \infty)$. The function is concave up on $(-\sqrt{3}, 0)$ and $(\sqrt{3}, \infty)$. The function is concave down on $(-\infty, -\sqrt{3})$ and $(0, \sqrt{3})$. There is an absolute maximum at x = 1. There is an absolute minimum at x = -1. There are inflection points at x = 0 and $x = \pm\sqrt{3}$.

(21) The volume is maximized when
$$x = \sqrt{35/3}$$
 feet and $y = (2/7)\sqrt{35/3}$ feet.

(22) The surface area is minimized when the height of the cone is $(600/\pi)^{1/3}$ inches. The surface area is the area of the "pacman" obtained when we make a straight line cut in the cone from the vertex to a point on the base of the cone, and then unravel the cone so that it is completely flat.

(23) The answer should have H = 2R, where H is the height of the cylinder, and R is the radius of the top (and bottom) circle.

(24) The inequality f(7) < -1 is a consequence of the Mean Value Theorem.