Solutions to the additional review problems

 (1) We find

$$
\int_1^4 f(x) dx = \int_1^{10} f(x) dx - \int_4^{10} f(x) dx = 2 - 7 = -5.
$$

Using this, we get

$$
\int_{4}^{8} f(x) dx = \int_{1}^{8} f(x) dx - \int_{1}^{4} f(x) dx = 14 - (-5) = 19.
$$

(2) We know $\frac{d}{dx} \int_{x^3}^0$ $e^{t^2} dt = \frac{d}{dx}\Bigg(\int x^3$ 0 $e^{t^2} dt$ = $-\frac{d}{dx} \int_0^{x^3}$ 0 $e^{t^2} dt$. Therefore, the

problem reduces to the evaluation of $\frac{d}{dx} \int_0^{x^3}$ J_0 $e^{t^2} dt$. If $F(x) = \int^x e^{t^2} dt$ then the fact $F'(x) = e^{x^2}$ (second version of the Fundamental Theorem of Calculus) implies

$$
\frac{d}{dx}\int_0^{x^3} e^{t^2} dt = \frac{d}{dx}F(x^3) = 3x^2F'(x^3) = 3x^2e^{(x^3)^2} = 3x^2e^{x^6}.
$$

This gives the answer

$$
\frac{d}{dx} \int_{x^3}^{0} e^{t^2} dt = -3x^2 e^{x^6}
$$

to the original question.

(3) First, we solve the easier problem $\lim_{x\to\infty} \ln((1+\frac{3}{x})^x)$. Then we do problem (3) using the solution to the easier problem.

$$
\lim_{x \to \infty} \ln \left(\left(1 + \frac{3}{x} \right)^x \right) = \lim_{x \to \infty} x \ln \left(1 + \frac{3}{x} \right) = \lim_{x \to \infty} \frac{\ln(1 + 3/x)}{1/x} = \lim_{x \to \infty} \frac{\frac{d}{dx} \ln(1 + 3/x)}{\frac{d}{dx}(1/x)}
$$

$$
= \lim_{x \to \infty} \frac{\left(\frac{-3/x^2}{1+3/x} \right)}{-1/x^2} = \lim_{x \to \infty} \frac{3}{1+3/x} = 3.
$$

When we apply the exponential function to the above, we get the solution

$$
\lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x = e^3
$$

to problem (3).

(4) At time t, the size of the population is Ae^{tk} , for some constants A and k. Since it quadruples in size between time 0 and time 7, we see $Ae^{7k} = 4Ae^{0k}$, which simplifies to $e^{7k} = 4$, $7k = \ln 4$, $k = (\ln 4)/7$. If T is the time it takes for the population to triple, then $Ae^{Tk} = 3Ae^{0k}$, which simplifies to $e^{Tk} = 3$, $Tk = \ln 3$, $T = (\ln 3)/k$. Plugging $k = (\ln 4)/7$ into the last identity of the previous sentence, we get $T = \frac{7 \ln 3}{\ln 4}$. It takes $\frac{7 \ln 3}{\ln 4}$ days for the population to triple in size.

(5) The substitution $u = x^4$, $du = 4x^3 dx$, $(1/4)du = x^3 dx$ gives

$$
\int \frac{x^3 dx}{\sqrt{1-x^8}} = \int \frac{x^3 dx}{\sqrt{1-(x^4)^2}} = \int \frac{(1/4)du}{\sqrt{1-u^2}} = (1/4)\sin^{-1} u + C = (1/4)\sin^{-1}(x^4) + C.
$$

(6) The substitution $u = x^4$, $du = 4x^3 dx$, $(1/4)du = x^3 dx$ gives

$$
\int \frac{x^3 dx}{1+x^8} = \int \frac{x^3 dx}{1+(x^4)^2} = \int \frac{(1/4)du}{1+u^2} = (1/4) \tan^{-1} u + C = (1/4) \tan^{-1} (x^4) + C.
$$

(7) The first derivative of $x^2 \ln x$ is $2x \ln x + x^2(1/x) = 2x \ln x + x$. The second derivative is $\frac{d}{1}$ dx $(2x \ln x + x) = 2 \ln x + 2x/x + 1 = 2 \ln x + 3$. The second derivative is negative when $\ln x < -3/2$, and the second derivative is positive when $\ln x > -3/2$. When $x > 0$, the inequalities $\ln x < -3/2$ and $\ln x > -3/2$ are equivalent to $x < e^{-3/2}$ and $x > e^{-3/2}$, respectively. Consequently, the function is concave down on $(0, e^{-3/2})$ and it is concave up on $(e^{-3/2}, \infty)$.

(8) The function $|x-1|$ is defined in pieces:

$$
|x - 1| = \begin{cases} -(x - 1) & \text{if } x \le 1\\ x - 1 & \text{if } x \ge 1 \end{cases}
$$

Therefore,

$$
\int_{-2}^{5} |x - 1| dx = \int_{-2}^{1} |x - 1| dx + \int_{1}^{5} |x - 1| dx = \int_{-2}^{1} -(x - 1) dx + \int_{1}^{5} x - 1 dx
$$

=
$$
\int_{-2}^{1} 1 - x dx + \int_{1}^{5} x - 1 dx = \left(x - \frac{x^2}{2} \right) \Big|_{-2}^{1} + \left(\frac{x^2}{2} - x \right) \Big|_{1}^{5}.
$$

(9) We wish to minimize the distance between (10,0) and the curve $x = 2y^2$ for $x \ge 0$. In other words, we wish to minimize

(1)
$$
\sqrt{(x-10)^2 + (y-0)^2} = \sqrt{(x-10)^2 + y^2} = \sqrt{(x-10)^2 + x/2}
$$

over the interval $x \geq 0$. The nonnegative x that minimize (I) are the x that solve the following problem:

(II) Minimize
$$
(x - 10)^2 + x/2
$$
 over $x \ge 0$.

When we look for critical points in (II) , we find

$$
0 = \frac{d}{dx}((x - 10)^2 + x/2) = 2(x - 10) + 1/2 , \quad 0 = 2x - 39/2 , \quad x = 39/4 .
$$

Since the function $(x-10)^2+x/2$ has positive second derivative, we conclude that $x = 39/4$ solves the minimizing problem (II). This corresponds to the points $(39/4, \pm \sqrt{39/8})$ on the curve $x = 2y^2$.

(10) The first derivative is $\frac{1}{\sqrt{1-x^2}} = (1-x^2)^{-1/2}$. Therefore, the second derivative is

$$
\frac{d}{dx}(1-x^2)^{-1/2} = (-1/2)(1-x^2)^{-3/2}(-2x) = \frac{x}{(1-x^2)^{3/2}}
$$

:

(11) The two curves intersect when $y^2 = y + 2$. This gives the two values $y = -1$ and $y = 2$. Since $(y + 2) - y^2 = -(y + 1)(y - 2)$, we conclude $(y + 2) - y^2 \ge 0$ for $-1 \le y \le 2$. This means $y^2 \le y + 2$ for $-1 \le y \le 2$. The area is

$$
\int_{-1}^{2} (y+2) - y^2 \, dy = \left(\frac{y^2}{2} + 2y - \frac{y^3}{3} \right) \Big|_{-1}^{2} \, .
$$

(12) We will use the formula \sum N $i=1$ $i =$ $N(N+1)$ 2 . We get

$$
\sum_{i=1000}^{2000} i = \sum_{i=1}^{2000} i - \sum_{i=1}^{999} i = \frac{2000 \cdot 2001}{2} - \frac{999 \cdot 1000}{2}.
$$