Solutions to Math 152 Review Problems for Exam 1

(1) If A(x) is the area of the rectangle formed when the solid is sliced at = perpendicular
to the z-axis, then A(z) = |x|(2v/1 — x2), because the height of the rectangle is |x| and
the base of the rectangle has length 2v/1 — x2. Therefore, the volume of the solid is

1 0 1
/ |z|(2 1—x2)dx:/ |z]|(2v/1 — x2) d:l:—l—/ |z[(2v1 — x2) dx
1 1 0

:/0(_3;)(2 1—x2)dx+/01x(2 1—2%)da.

—1

If we use the substitution v = 1 — 22 then we see that the integral over [—1,0] is equal
to 2/3, and that the integral over [0, 1] is also equal to 2/3. Therefore, the volume of the
solid is 2/3 4+ 2/3 = 4/3.

(2) The average of f(x) =1 — a2 over [—1,1] is %f_ll V1—a?de =1 (%) =% Weused
the following fact: fil V1 — 22 dx is half of the area of a circle of radius 1. Now we have

to solve V1 —c? = f(c) = §. The solutions are ¢ = £,/1 —72/16. The existence of at
least one c is guaranteed by the Mean Value Theorem for Integrals.

(3)(a) This type of cone is obtained when the region bounded by y = 0,z = H,y = (R/H)x
is rotated about the z-axis. The volume is 7 fOH((R/H)m)2 dr = mR?*H/3.

(3)(b) This type of cone is obtained when the region bounded by z =0,y = H,y = (H/R)x
is rotated about the y-axis. The volume is fOR 2rx(H — (H/R)x)dx = mR2H/3.

(4)(a) The equation y = 2(x — 3) is equivalent to z = 3 + y/2. The method of washers
gives a volume of

7r/2(3+y/2— 12— (3-1)2dy :7r/22y+y2/4dy:7r(4+2/3) = 147/3.
0 0

(4)(b) The method of shells gives a volume of

/4 21(z — 1)(2 — 2(z — 3)) dx = 4~ /4 —2? + 5z — 4dr = 47(7/6) = 147 /3.

d d
(5)(a) u =sinz, /cotxdx:/cosx o[ =Injul|+ C =In|sinz|+ C.
u

sin
(5)(b) u = coswz, /tanwdx = /smxd:z: _ [ —In|u|+C = —In|cosz| + C,
cos u

where the last expression equals In |sec x| + C.
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t d d
(5)(c) u = secx, /tanxdx:/w: —u:ln]secxl+0.
u

sec x
inh x d d

(5)(d) u = coshz, /tanhxdw = /M - [ In|u| + C = In|coshz| + C,
coshz U

which equals In(cosh z) + C because cosh z is always positive for real values of z.
hxd d

(5)(e) u = sinh, /cothxdm = / COTaT _ [ In|u|+C =In|sinhz|+ C.

sinh x U

(6)(A) When u = cscx + cot x we get

cscx 4+ cotx csc? x + cscx cot
cscxrdr= | cscx - —————— dx = dx
cscx + cotx cscx + cotx

d
= — _u:—ln|u|+C’:—ln\cscx+cota:\—|—0.
u

(6)(B) When u = cscz — cot x we get

cscx —cotx csc2 x — cscx cot
cscrdr = [ cscx - ———— dx = dx
cscx —cotx cscxr —coto

d
= _uzln]u|+C’:ln\csc:c—cotx|—|—C’.
u

2

(6)(C) The computation below uses csc? z — cot? x = 1 at the end:

1
cscx +cotx

cscx —cotx

—In|cscx 4+ cotx| =1n
| | (cscx + cot x)(cscx — cot x)

cscxr —cotx

=In = In|cscx — cot z|.

csc2x — cot? x

(7) For the first integral, we do an integration by parts and get
/sim2 rdr = /sinxsinxdx
= (—cosz)(sinx) — /(— cosz)(cosx) dx
= —coszsinx + /costdx
= —coszsinzx + /(1 — sinzaz) dx
= —cosxsinx +x — /sin2xdx.
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After adding [ sin? z dz to both sides, we discover
2/sin2xdx = —coszsinz +x + C,
and this is equivalent to
. 9 1 .
sin® x dx = 5(9@ —coszsinz) 4+ C.
The second integral is very similar. Integration by parts produces
/COSQCL‘dIL' = /cosxcosxdm
= (sinx)(cosz) — /(sin x)(—sinx) dx
=sinxcosx + /sianda:
=sinzcosx + /(1 — cos? x) dx
=sinzcosx +x — /costd:c.
We add [ cos? x dx to both sides and get
2/cos2a:d:1: =sinxcosx +x + C,
and this is equivalent to
2 1 .
cos” xdr = é(x +sinzcosz) + C.

The method in this problem can be used to derive the reduction formulas for [ cos™ z dx
and [ sin" 2 dz. In order to get the cos reduction formula, we proceed as follows:

/cos”xda: = /cosxcos"_1 xdz
= (sinz)(cos" ') — /(sin z)((n — 1) cos" ?z(—sinz)) dz
—sinzcos" x4 (n—1) /sin2 zcos" 2z dx
=sinzcos" x4+ (n—1) /(1 — cos? x) cos" % xdx
=sinzcos" 'z + (n—1) /cos”_2 xdr —(n—1) /Cos” x dzx.
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After adding (n — 1) [ cos™ z dx to both sides, we get
n/cos” rdr =sinzcos" 'z + (n—1) /Cos.”_2 xdx,

and this is equivalent to

1 n—1
/cos” zdr = =sinzcos" tx+ /cos"2 rdr.
n n

(8) If we use the substitution u = tanz then we find

/tanxsec4xd:v = /tanxsec2xse02xdx = /tan:c(1+tan2 r)sec® x dx

B R e B e S e

On the other hand, we can use the substitution v = sec x and obtain

4
/tanxsec4xdx:/sec?’x(tanxsecx)dl‘:/u3du: UZ+C’:

SeC4 T

4

+C.

To see that these two answers are really the same, note
sect x (sec? x)? (1 + tan? z)? 1+ 2tan®x + tant x

1 02—4 +C = 1 +C = 1 +C

_tan2m+tan4x 1—1—0 _tan2x+tan4a:+c
2 4 4 2 4

because i + C' is an arbitrary constant.

(9) We use integration by parts and long division (applied to

%) to conclude
2 2
1
/:Utan_lxdx: %tan_lx—/%- e dx

+
2 1 1 2 1
:%tan_lx—i/l—mdx:%tan_lx—§(x—tan_1x)+0.

(10) There are three integrations by parts:

/(ln:c)3 dx = r(Inx)® — /:c 3(n)” dx

T

— s(ng)? — 3/(1n )2 da
— 2(na)® — 3 {x(lnx)z _ /x 2Inz dx}

x
= 2(lnz)® — 3z(Inx)? + 6/1n:1: dx

= 2(lnz)® — 3z(lnx)® + 6 {x Inx — / g dx}
=2(lnz)* — 3z(Inx)? + 6xInx — 62 + C.
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Of course, we could have derived a reduction formula for [(Inz)™dz and used it three
times.

(11) The first integration by parts gets us as far as

/cos(am) cos(bx) dx = (2 sin(az)) cos(bx) — / 2 sin(az) ( — bsin(bz)) dz
= %sin(am) cos(bz) + g /sin(am) sin(bz) dz.

Now we focus on [ sin(ax)sin(bz) dz and do another integration by parts:

/sin(am) sin(bz) dx = ( — 1 cos(ax)) sin(bx) — / (- ! cos(az))bcos(bx) dz

a a
1 b
= cos(ax) sin(bx) + o /Cos(cwc) cos(bz) dx.
When this equation is substituted into the previous equation, we get

/cos(aac) cos(bz) dx

1. bl 1 , b

= —sin(ax) cos(bx) + — | —— cos(az) sin(bx) + — [ cos(ax) cos(bz)dz| ,

a al a a

which can be rewritten as

(1 _ f) / cos(a) cos(bx) dz = ésin(ax) cos(bx) — a%cos(aw) sin(bz) + C.

This is equivalent to

asin(ax) cos(bx) — bcos(ax) sin(bx)

/cos(ax) cos(bx) dx = +C.

a2 — b2

One can show that this answer is equivalent to equation 25 on page 410 of the textbook.

(12) Integration by parts and the trigonometric identity 1 + tan?z = sec? z allow us to
write
/ sec® xdx = / sec? xsecr dr = tanzsecr — /tan z(tan z secx) dx
= tanxsecxr — /taan:seca:dx
= tanxsecx — /(sech —1)seczdx

:tanxsecx—/Sec3xd:c+/secxdx

= tanxsecr — /sechdx—l—ln|tanx~|—secx|.

5



After adding [ sec® z dz to both sides, we get
2/sec3xdaz = tanxsecz + In|tanz + sec x| 4+ C.
After dividing by 2, we get
5 1 1
sec’ xdr = étanxsecx + 3 In|tanz + secz| + C.

The method in this problem can be used to derive the reduction formulas for [ sec™ z dx
and f csc™ xdzx. In order to get the sec reduction formula, we proceed as follows:

/secm rdr = / sec’ xsec™ 2w dx
= (tanz)(sec™ 2 z) — /(tan z)((m — 2)sec™® ztan zsec z) dz
= tanzsec™ 2z — (m — 2) /tam2 zsec™ 2z dx
= tanzsec™ 2z — (m — 2) /(sec2 x—1)sec™ 2z dx
= tanzsec™ 2z — (m — 2) /secm rdr + (m — 2) /secm_2 zdz.
After adding (m — 2) [ sec™ x dx to both sides, we get
(m—1) /secm zdr =tanzsec™ 2z + (m — 2) /secm2 xdx,

and this is equivalent to

1 -2
/secm T dr = 7 tanzsec™ 2z + m_l /secm_2 zdzx.
m — m —

(13) We use the substitution z = 3tan 6 and the result of problem (12):

/\/9+x2dx:/(3se00)(3se020)d9:9/Sec3ed0

9 9
= étan(?secﬁ—f— §ln|tan9—|—se(:9| +C




where we used

9 V9 2 9 9
§ln g—k% +C:§ln|x+\/9+x2\—§ln3+C’,

the fact that —% In3 + C' is an arbitrary constant C', and the positivity of x + /9 + 22 for
any .
(14) Here the substitution z = 3sin 6 is appropriate and we use problem (7):

/\/9—:1;261:1::/36059-30059d9:9/00829d9

9 : 9.
—§(¢9+sm90059)—|—0—2<sm (3

(15) Here the substitution x = tan # is appropriate and we also use problem (7). The trick

sinf cos = ;:Cg% is helpful at the end when we rewrite everything in terms of x.

/ dz _/ sec? 0 d _/seczﬁdﬁ_/ do —/c0826d6
(1+22)2 ) (1+tan?6)2 ) (sec20)2 | sec2d

- %(9+sinecos9) o=t (9+ tang) +C

2 sec2 0

1 1 x
zi(tan x+1+x2)+C’.

(16) The correct partial fractions setup is

/3x2—3:1:—2 dm—/ 322 — 3z —2 dw—/ A n B n C de
(22 —-V(z—-1) " ) (@+D)z-12" Jz+1 z-1 (x—-1)277

Now we have to solve for A, B, C' in the equation

3r2 — 31z —2 A B C

CrD@—12 241 z2-1 @-12

Since this can be rewritten as

322 — 31 —2 Az =12+ Bz —1)(z+ 1)+ C(z +1)

(z+1)(z—1)2 (z+1)(z —1) ’

we have to solve for A, B, C' in the equation
322 =32 —2=A(x - 1)*+ Bz - 1)(z+ 1)+ C(z + 1).
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If we plug in x = 1 and « = —1 into this last equation, then we get C = —1 and A =1,
respectively. If we compare the coefficients of 22 in this same last equation, then we get
3 = A+ B. Now we conclude B = 2. Finally,

/3x2—3:1:—2d_/ 1,2 -t
@2-Daz-1)" " Jrz+1 a1 (@-12"

1
:ln]x+1]+21n|a:—1|+—1+0.
x_

(17) The correct partial fractions setup is

2 + 3z Axr + B C
5 dxr = + dx
(x2+1)(x+1) »2+1  r+1

Now we have to solve for A, B, C' in the equation

(22 4+1)(z+1) 2+l rtl (22 4+ 1)(z +1)

z? + 3z Az +B C (Ax + B)(x + 1)+ C(22 + 1)

This is the same as solving for A, B, C' in the equation

(*) 2°+3z=(Av+B)(z+1)+C(2*+1)=(A+C)z* + (B+ Az + (B + C).
Equating coefficients, we get

(xx) A+C=1 , B+A=3 , B+C=0.

There is a short cut for solving these three equations in three unknowns: If we go back to
the equation 2% + 3z = (Az + B)(x + 1) + C(2? + 1) in (%) and plug in z = —1, then we
obtain —2 = 2C, hence C' = —1. Plugging C' = —1 into part A + C = 1 of (xx) we get
A = 2. Plugging A = 2 into B + A = 3 of (xx) we get B = 1. Our results are consistent
with B+ C = 0 of (xx). This is a way of checking our arithmetic. Plugging these A, B, C
into our partial fractions setup, we get

z? + 3 20+1 -1
do = dr =In(z® +1) + tan "z — In|o + 1| + C.
/<w2+1><x+1> ) /w2+1+x+1 r=In@?+1)+tan" 2 —Infz+ 1]+

1
@ 1

(18) We know 0 < 1 < < for 0 < z < 1 and we know that / — dx diverges. All this
0

1 =z
e
implies that / — dx diverges.
o T

oo 1 oo
Turning to the other improper integral, we obtain / ze™® dr = 3 / e~ du when we
0 0

o
use the substitution v = 22. If we can show that / e du converges then we will be
0
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o) 1
able to conclude that / ze " da converges. It is clear that / e~ du is finite. If we
0 0

o
can show that / e’“2 du is finite then it will be clear that
1

o0 2 1 2 oo 2
/ e v du:/ e v du-l—/ e " du
0 0 1

O
is finite, and hence convergent. If u > 1 then 0 < e < e . In addition, / e “du =
1

[e.e)
e~ 1. The last two sentences imply that / e~ du is finite.
1

1 A B

19) We sol = .
(19) We solve (2x 4+ 1)(3z + 1) 2$—|—1+3$—|—1
B(2x + 1) = 1. The substitution x = —1/3 gives B = 3. The substitution x = —1/2 gives
A = —2. Now we get

This is equivalent to A(3x + 1) +

dz 3 2 3r+1
= — dx =In[3z+1|—In|22+1|+C =1 C.
/(2$+1)(3x+1) /3x+1 271 00 = nBetll=nrl+0 = 2x+1‘+
The computation
3R+1 3
lim 1 =In(=-| =1 2
Rg?)on‘QR—f—l‘ n‘z‘ n(3/2)
> dz 3R+1 3-4+1
leads t = lim 1 - =1In(3/2) — In(1 .
cads 0/4 2+ )3z +1)  Roso 23+1‘ n‘2-4+1‘ n(3/2) — In(13/9)
2 1 >~ 1
(20) We know 0 < cosgm < — for z > 1. Since / — dx converges, we conclude that
x x x
* cos?x 1
dx converges.
1 z?



