Solutions to Math 152 Review Problems for Exam 1

(1) If A(x) is the area of the rectangle formed when the solid is sliced at x perpendicular to the x-axis, then $A(x) = |x|(2\sqrt{1-x^2})$, because the height of the rectangle is |x| and the base of the rectangle has length $2\sqrt{1-x^2}$. Therefore, the volume of the solid is

$$\int_{-1}^{1} |x| (2\sqrt{1-x^2}) \, dx = \int_{-1}^{0} |x| (2\sqrt{1-x^2}) \, dx + \int_{0}^{1} |x| (2\sqrt{1-x^2}) \, dx$$
$$= \int_{-1}^{0} (-x) (2\sqrt{1-x^2}) \, dx + \int_{0}^{1} x (2\sqrt{1-x^2}) \, dx.$$

If we use the substitution $u = 1 - x^2$ then we see that the integral over [-1,0] is equal to 2/3, and that the integral over [0,1] is also equal to 2/3. Therefore, the volume of the solid is 2/3 + 2/3 = 4/3.

- (2) The average of $f(x) = \sqrt{1-x^2}$ over [-1,1] is $\frac{1}{2} \int_{-1}^{1} \sqrt{1-x^2} \, dx = \frac{1}{2} \left(\frac{\pi}{2}\right) = \frac{\pi}{4}$. We used the following fact: $\int_{-1}^{1} \sqrt{1-x^2} \, dx$ is half of the area of a circle of radius 1. Now we have to solve $\sqrt{1-c^2} = f(c) = \frac{\pi}{4}$. The solutions are $c = \pm \sqrt{1-\pi^2/16}$. The existence of at least one c is guaranteed by the Mean Value Theorem for Integrals.
- (3)(a) This type of cone is obtained when the region bounded by y = 0, x = H, y = (R/H)x is rotated about the x-axis. The volume is $\pi \int_0^H ((R/H)x)^2 dx = \pi R^2 H/3$.
- (3)(b) This type of cone is obtained when the region bounded by x=0, y=H, y=(H/R)x is rotated about the y-axis. The volume is $\int_0^R 2\pi x (H-(H/R)x) dx = \pi R^2 H/3$.
- (4)(a) The equation y = 2(x-3) is equivalent to x = 3 + y/2. The method of washers gives a volume of

$$\pi \int_0^2 (3+y/2-1)^2 - (3-1)^2 \, dy = \pi \int_0^2 2y + y^2/4 \, dy = \pi (4+2/3) = 14\pi/3.$$

(4)(b) The method of shells gives a volume of

$$\int_{3}^{4} 2\pi(x-1)(2-2(x-3)) dx = 4\pi \int_{3}^{4} -x^{2} + 5x - 4 dx = 4\pi(7/6) = 14\pi/3.$$

(5)(a)
$$u = \sin x$$
, $\int \cot x \, dx = \int \frac{\cos x \, dx}{\sin x} = \int \frac{du}{u} = \ln|u| + C = \ln|\sin x| + C$.

(5)(b)
$$u = \cos x$$
, $\int \tan x \, dx = \int \frac{\sin x \, dx}{\cos x} = -\int \frac{du}{u} = -\ln|u| + C = -\ln|\cos x| + C$, where the last expression equals $\ln|\sec x| + C$.

(5)(c)
$$u = \sec x$$
, $\int \tan x \, dx = \int \frac{\tan x \sec x \, dx}{\sec x} = \int \frac{du}{u} = \ln|\sec x| + C$.

(5)(d)
$$u = \cosh x$$
, $\int \tanh x \, dx = \int \frac{\sinh x \, dx}{\cosh x} = \int \frac{du}{u} = \ln|u| + C = \ln|\cosh x| + C$, which equals $\ln(\cosh x) + C$ because $\cosh x$ is always positive for real values of x .

(5)(e)
$$u = \sinh x$$
, $\int \coth x \, dx = \int \frac{\cosh x \, dx}{\sinh x} = \int \frac{du}{u} = \ln|u| + C = \ln|\sinh x| + C$.

(6)(A) When $u = \csc x + \cot x$ we get

$$\int \csc x \, dx = \int \csc x \cdot \frac{\csc x + \cot x}{\csc x + \cot x} \, dx = \int \frac{\csc^2 x + \csc x \cot x}{\csc x + \cot x} \, dx$$
$$= -\int \frac{du}{u} = -\ln|u| + C = -\ln|\csc x + \cot x| + C.$$

(6)(B) When $u = \csc x - \cot x$ we get

$$\int \csc x \, dx = \int \csc x \cdot \frac{\csc x - \cot x}{\csc x - \cot x} \, dx = \int \frac{\csc^2 x - \csc x \cot x}{\csc x - \cot x} \, dx$$
$$= \int \frac{du}{u} = \ln|u| + C = \ln|\csc x - \cot x| + C.$$

(6)(C) The computation below uses $\csc^2 x - \cot^2 x = 1$ at the end:

$$-\ln|\csc x + \cot x| = \ln\left|\frac{1}{\csc x + \cot x}\right| = \ln\left|\frac{\csc x - \cot x}{(\csc x + \cot x)(\csc x - \cot x)}\right|$$
$$= \ln\left|\frac{\csc x - \cot x}{\csc^2 x - \cot^2 x}\right| = \ln|\csc x - \cot x|.$$

(7) For the first integral, we do an integration by parts and get

$$\int \sin^2 x \, dx = \int \sin x \sin x \, dx$$

$$= (-\cos x)(\sin x) - \int (-\cos x)(\cos x) \, dx$$

$$= -\cos x \sin x + \int \cos^2 x \, dx$$

$$= -\cos x \sin x + \int (1 - \sin^2 x) \, dx$$

$$= -\cos x \sin x + x - \int \sin^2 x \, dx.$$

After adding $\int \sin^2 x \, dx$ to both sides, we discover

$$2\int \sin^2 x \, dx = -\cos x \sin x + x + C,$$

and this is equivalent to

$$\int \sin^2 x \, dx = \frac{1}{2}(x - \cos x \sin x) + C.$$

The second integral is very similar. Integration by parts produces

$$\int \cos^2 x \, dx = \int \cos x \cos x \, dx$$

$$= (\sin x)(\cos x) - \int (\sin x)(-\sin x) \, dx$$

$$= \sin x \cos x + \int \sin^2 x \, dx$$

$$= \sin x \cos x + \int (1 - \cos^2 x) \, dx$$

$$= \sin x \cos x + x - \int \cos^2 x \, dx.$$

We add $\int \cos^2 x \, dx$ to both sides and get

$$2\int \cos^2 x \, dx = \sin x \cos x + x + C,$$

and this is equivalent to

$$\int \cos^2 x \, dx = \frac{1}{2}(x + \sin x \cos x) + C.$$

The method in this problem can be used to derive the reduction formulas for $\int \cos^n x \, dx$ and $\int \sin^n x \, dx$. In order to get the cos reduction formula, we proceed as follows:

$$\int \cos^n x \, dx = \int \cos x \cos^{n-1} x \, dx$$

$$= (\sin x)(\cos^{n-1} x) - \int (\sin x) ((n-1)\cos^{n-2} x (-\sin x)) \, dx$$

$$= \sin x \cos^{n-1} x + (n-1) \int \sin^2 x \cos^{n-2} x \, dx$$

$$= \sin x \cos^{n-1} x + (n-1) \int (1 - \cos^2 x) \cos^{n-2} x \, dx$$

$$= \sin x \cos^{n-1} x + (n-1) \int \cos^{n-2} x \, dx - (n-1) \int \cos^n x \, dx.$$

After adding $(n-1) \int \cos^n x \, dx$ to both sides, we get

$$n \int \cos^n x \, dx = \sin x \cos^{n-1} x + (n-1) \int \cos^{n-2} x \, dx,$$

and this is equivalent to

$$\int \cos^n x \, dx = -\frac{1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} \int \cos^{n-2} x \, dx.$$

(8) If we use the substitution $u = \tan x$ then we find

$$\int \tan x \sec^4 x \, dx = \int \tan x \sec^2 x \sec^2 x \, dx = \int \tan x (1 + \tan^2 x) \sec^2 x \, dx$$
$$= \int u (1 + u^2) \, du = \int u + u^3 \, du = \frac{u^2}{2} + \frac{u^4}{4} + C = \frac{\tan^2 x}{2} + \frac{\tan^4 x}{4} + C.$$

On the other hand, we can use the substitution $u = \sec x$ and obtain

$$\int \tan x \sec^4 x \, dx = \int \sec^3 x (\tan x \sec x) \, dx = \int u^3 \, du = \frac{u^4}{4} + C = \frac{\sec^4 x}{4} + C.$$

To see that these two answers are really the same, note

$$\frac{\sec^4 x}{4} + C = \frac{(\sec^2 x)^2}{4} + C = \frac{(1 + \tan^2 x)^2}{4} + C = \frac{1 + 2\tan^2 x + \tan^4 x}{4} + C$$
$$= \frac{\tan^2 x}{2} + \frac{\tan^4 x}{4} + \left(\frac{1}{4} + C\right) = \frac{\tan^2 x}{2} + \frac{\tan^4 x}{4} + C$$

because $\frac{1}{4} + C$ is an arbitrary constant.

(9) We use integration by parts and long division (applied to $\frac{x^2}{1+x^2}$) to conclude

$$\int x \tan^{-1} x \, dx = \frac{x^2}{2} \tan^{-1} x - \int \frac{x^2}{2} \cdot \frac{1}{1+x^2} \, dx$$
$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int 1 - \frac{1}{1+x^2} \, dx = \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} (x - \tan^{-1} x) + C.$$

(10) There are three integrations by parts:

$$\int (\ln x)^3 dx = x(\ln x)^3 - \int x \cdot \frac{3(\ln x)^2}{x} dx$$

$$= x(\ln x)^3 - 3 \int (\ln x)^2 dx$$

$$= x(\ln x)^3 - 3 \left[x(\ln x)^2 - \int x \cdot \frac{2\ln x}{x} dx \right]$$

$$= x(\ln x)^3 - 3x(\ln x)^2 + 6 \int \ln x dx$$

$$= x(\ln x)^3 - 3x(\ln x)^2 + 6 \left[x \ln x - \int \frac{x}{x} dx \right]$$

$$= x(\ln x)^3 - 3x(\ln x)^2 + 6x \ln x - 6x + C.$$

Of course, we could have derived a reduction formula for $\int (\ln x)^n dx$ and used it three times.

(11) The first integration by parts gets us as far as

$$\int \cos(ax)\cos(bx) dx = \left(\frac{1}{a}\sin(ax)\right)\cos(bx) - \int \frac{1}{a}\sin(ax)\left(-b\sin(bx)\right) dx$$
$$= \frac{1}{a}\sin(ax)\cos(bx) + \frac{b}{a}\int \sin(ax)\sin(bx) dx.$$

Now we focus on $\int \sin(ax) \sin(bx) dx$ and do another integration by parts:

$$\int \sin(ax)\sin(bx) dx = \left(-\frac{1}{a}\cos(ax)\right)\sin(bx) - \int \left(-\frac{1}{a}\cos(ax)\right)b\cos(bx) dx$$
$$= -\frac{1}{a}\cos(ax)\sin(bx) + \frac{b}{a}\int\cos(ax)\cos(bx) dx.$$

When this equation is substituted into the previous equation, we get

$$\int \cos(ax)\cos(bx) dx$$

$$= \frac{1}{a}\sin(ax)\cos(bx) + \frac{b}{a}\left[-\frac{1}{a}\cos(ax)\sin(bx) + \frac{b}{a}\int\cos(ax)\cos(bx) dx\right],$$

which can be rewritten as

$$\left(1 - \frac{b^2}{a^2}\right) \int \cos(ax)\cos(bx) \, dx = \frac{1}{a}\sin(ax)\cos(bx) - \frac{b}{a^2}\cos(ax)\sin(bx) + C.$$

This is equivalent to

$$\int \cos(ax)\cos(bx) dx = \frac{a\sin(ax)\cos(bx) - b\cos(ax)\sin(bx)}{a^2 - b^2} + C.$$

One can show that this answer is equivalent to equation 25 on page 410 of the textbook.

(12) Integration by parts and the trigonometric identity $1 + \tan^2 x = \sec^2 x$ allow us to write

$$\int \sec^3 x \, dx = \int \sec^2 x \sec x \, dx = \tan x \sec x - \int \tan x (\tan x \sec x) \, dx$$

$$= \tan x \sec x - \int \tan^2 x \sec x \, dx$$

$$= \tan x \sec x - \int (\sec^2 x - 1) \sec x \, dx$$

$$= \tan x \sec x - \int \sec^3 x \, dx + \int \sec x \, dx$$

$$= \tan x \sec x - \int \sec^3 x \, dx + \ln|\tan x + \sec x|.$$

After adding $\int \sec^3 x \, dx$ to both sides, we get

$$2\int \sec^3 x \, dx = \tan x \sec x + \ln|\tan x + \sec x| + C.$$

After dividing by 2, we get

$$\int \sec^3 x \, dx = \frac{1}{2} \tan x \sec x + \frac{1}{2} \ln|\tan x + \sec x| + C.$$

The method in this problem can be used to derive the reduction formulas for $\int \sec^m x \, dx$ and $\int \csc^m x \, dx$. In order to get the sec reduction formula, we proceed as follows:

$$\int \sec^m x \, dx = \int \sec^2 x \sec^{m-2} x \, dx$$

$$= (\tan x)(\sec^{m-2} x) - \int (\tan x)((m-2)\sec^{m-3} x \tan x \sec x) \, dx$$

$$= \tan x \sec^{m-2} x - (m-2) \int \tan^2 x \sec^{m-2} x \, dx$$

$$= \tan x \sec^{m-2} x - (m-2) \int (\sec^2 x - 1) \sec^{m-2} x \, dx$$

$$= \tan x \sec^{m-2} x - (m-2) \int \sec^m x \, dx + (m-2) \int \sec^{m-2} x \, dx.$$

After adding $(m-2) \int \sec^m x \, dx$ to both sides, we get

$$(m-1)\int \sec^m x \, dx = \tan x \sec^{m-2} x + (m-2)\int \sec^{m-2} x \, dx,$$

and this is equivalent to

$$\int \sec^m x \, dx = \frac{1}{m-1} \tan x \sec^{m-2} x + \frac{m-2}{m-1} \int \sec^{m-2} x \, dx.$$

(13) We use the substitution $x = 3 \tan \theta$ and the result of problem (12):

$$\int \sqrt{9 + x^2} \, dx = \int (3 \sec \theta) (3 \sec^2 \theta) \, d\theta = 9 \int \sec^3 \theta \, d\theta$$

$$= \frac{9}{2} \tan \theta \sec \theta + \frac{9}{2} \ln|\tan \theta + \sec \theta| + C$$

$$= \frac{9}{2} \cdot \frac{x}{3} \cdot \frac{\sqrt{9 + x^2}}{3} + \frac{9}{2} \ln\left|\frac{x}{3} + \frac{\sqrt{9 + x^2}}{3}\right| + C$$

$$= \frac{x}{2} \sqrt{9 + x^2} + \frac{9}{2} \ln(x + \sqrt{9 + x^2}) + C,$$

where we used

$$\frac{9}{2}\ln\left|\frac{x}{3} + \frac{\sqrt{9+x^2}}{3}\right| + C = \frac{9}{2}\ln|x + \sqrt{9+x^2}| - \frac{9}{2}\ln 3 + C,$$

the fact that $-\frac{9}{2} \ln 3 + C$ is an arbitrary constant C, and the positivity of $x + \sqrt{9 + x^2}$ for any x.

(14) Here the substitution $x = 3\sin\theta$ is appropriate and we use problem (7):

$$\int \sqrt{9 - x^2} \, dx = \int 3\cos\theta \cdot 3\cos\theta \, d\theta = 9 \int \cos^2\theta \, d\theta$$
$$= \frac{9}{2} (\theta + \sin\theta\cos\theta) + C = \frac{9}{2} \left(\sin^{-1}\left(\frac{x}{3}\right) + \frac{x}{3} \cdot \frac{\sqrt{9 - x^2}}{3} \right) + C.$$

(15) Here the substitution $x = \tan \theta$ is appropriate and we also use problem (7). The trick $\sin \theta \cos \theta = \frac{\tan \theta}{\sec^2 \theta}$ is helpful at the end when we rewrite everything in terms of x.

$$\int \frac{dx}{(1+x^2)^2} = \int \frac{\sec^2 \theta \, d\theta}{(1+\tan^2 \theta)^2} = \int \frac{\sec^2 \theta \, d\theta}{(\sec^2 \theta)^2} = \int \frac{d\theta}{\sec^2 \theta} = \int \cos^2 \theta \, d\theta$$
$$= \frac{1}{2}(\theta + \sin \theta \cos \theta) + C = \frac{1}{2}\left(\theta + \frac{\tan \theta}{\sec^2 \theta}\right) + C$$
$$= \frac{1}{2}\left(\tan^{-1} x + \frac{x}{1+x^2}\right) + C.$$

(16) The correct partial fractions setup is

$$\int \frac{3x^2 - 3x - 2}{(x^2 - 1)(x - 1)} \, dx = \int \frac{3x^2 - 3x - 2}{(x + 1)(x - 1)^2} \, dx = \int \frac{A}{x + 1} + \frac{B}{x - 1} + \frac{C}{(x - 1)^2} \, dx.$$

Now we have to solve for A, B, C in the equation

$$\frac{3x^2 - 3x - 2}{(x+1)(x-1)^2} = \frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{(x-1)^2}.$$

Since this can be rewritten as

$$\frac{3x^2 - 3x - 2}{(x+1)(x-1)^2} = \frac{A(x-1)^2 + B(x-1)(x+1) + C(x+1)}{(x+1)(x-1)^2},$$

we have to solve for A, B, C in the equation

$$3x^{2} - 3x - 2 = A(x-1)^{2} + B(x-1)(x+1) + C(x+1).$$

If we plug in x = 1 and x = -1 into this last equation, then we get C = -1 and A = 1, respectively. If we compare the coefficients of x^2 in this same last equation, then we get 3 = A + B. Now we conclude B = 2. Finally,

$$\int \frac{3x^2 - 3x - 2}{(x^2 - 1)(x - 1)} dx = \int \frac{1}{x + 1} + \frac{2}{x - 1} + \frac{-1}{(x - 1)^2} dx$$
$$= \ln|x + 1| + 2\ln|x - 1| + \frac{1}{x - 1} + C.$$

(17) The correct partial fractions setup is

$$\int \frac{x^2 + 3x}{(x^2 + 1)(x + 1)} \, dx = \int \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 1} \, dx.$$

Now we have to solve for A, B, C in the equation

$$\frac{x^2 + 3x}{(x^2 + 1)(x + 1)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 1} = \frac{(Ax + B)(x + 1) + C(x^2 + 1)}{(x^2 + 1)(x + 1)}.$$

This is the same as solving for A, B, C in the equation

(*)
$$x^2 + 3x = (Ax + B)(x + 1) + C(x^2 + 1) = (A + C)x^2 + (B + A)x + (B + C).$$

Equating coefficients, we get

(**)
$$A + C = 1$$
 , $B + A = 3$, $B + C = 0$.

There is a short cut for solving these three equations in three unknowns: If we go back to the equation $x^2 + 3x = (Ax + B)(x + 1) + C(x^2 + 1)$ in (*) and plug in x = -1, then we obtain -2 = 2C, hence C = -1. Plugging C = -1 into part A + C = 1 of (**) we get A = 2. Plugging A = 2 into B + A = 3 of (**) we get B = 1. Our results are consistent with B + C = 0 of (**). This is a way of checking our arithmetic. Plugging these A, B, C into our partial fractions setup, we get

$$\int \frac{x^2 + 3x}{(x^2 + 1)(x + 1)} dx = \int \frac{2x + 1}{x^2 + 1} + \frac{-1}{x + 1} dx = \ln(x^2 + 1) + \tan^{-1} x - \ln|x + 1| + C.$$

(18) We know $0 < \frac{1}{x} < \frac{e^x}{x}$ for $0 < x \le 1$ and we know that $\int_0^1 \frac{1}{x} dx$ diverges. All this implies that $\int_0^1 \frac{e^x}{x} dx$ diverges.

Turning to the other improper integral, we obtain $\int_0^\infty xe^{-x^4} dx = \frac{1}{2} \int_0^\infty e^{-u^2} du$ when we use the substitution $u = x^2$. If we can show that $\int_0^\infty e^{-u^2} du$ converges then we will be

able to conclude that $\int_0^\infty xe^{-x^4} dx$ converges. It is clear that $\int_0^1 e^{-u^2} du$ is finite. If we can show that $\int_1^\infty e^{-u^2} du$ is finite then it will be clear that

$$\int_0^\infty e^{-u^2} du = \int_0^1 e^{-u^2} du + \int_1^\infty e^{-u^2} du$$

is finite, and hence convergent. If $u \ge 1$ then $0 < e^{-u^2} \le e^{-u}$. In addition, $\int_1^\infty e^{-u} du = e^{-1}$. The last two sentences imply that $\int_1^\infty e^{-u^2} du$ is finite.

(19) We solve $\frac{1}{(2x+1)(3x+1)} = \frac{A}{2x+1} + \frac{B}{3x+1}$. This is equivalent to A(3x+1) + B(2x+1) = 1. The substitution x = -1/3 gives B = 3. The substitution x = -1/2 gives A = -2. Now we get

$$\int \frac{dx}{(2x+1)(3x+1)} = \int \frac{3}{3x+1} - \frac{2}{2x+1} \, dx = \ln|3x+1| - \ln|2x+1| + C = \ln\left|\frac{3x+1}{2x+1}\right| + C.$$

The computation

$$\lim_{R\to\infty} \ln \left| \frac{3R+1}{2R+1} \right| = \ln \left| \frac{3}{2} \right| = \ln(3/2)$$

leads to
$$\int_{4}^{\infty} \frac{dx}{(2x+1)(3x+1)} = \lim_{R \to \infty} \ln \left| \frac{3R+1}{2R+1} \right| - \ln \left| \frac{3 \cdot 4 + 1}{2 \cdot 4 + 1} \right| = \ln(3/2) - \ln(13/9).$$

(20) We know
$$0 \le \frac{\cos^2 x}{x^3} \le \frac{1}{x^3}$$
 for $x \ge 1$. Since $\int_1^\infty \frac{1}{x^3} dx$ converges, we conclude that $\int_1^\infty \frac{\cos^2 x}{x^3} dx$ converges.