Solutions to Review sheet for Exam 2 of Math 152

(1) We will use the Limit Comparison Test with the simpler series
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which is a finite, positive number. If the simpler series Yo, \/ 7 1. diverges then the

original series diverges. The simpler series is just )., =, which diverges. Therefore, the
original series diverges.

(2) This is an example where the Limit Comparison Test is used twice. Consider first the

simpler series Z We do a Limit Comparison of this simpler series with the even
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simpler series E —. The limit of the ratios is
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which is a ﬁnite, positive number. Since the series Y~ % diverges, we conclude that the
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series Z 15 also diverges. Now we do a Limit Comparison Test involving y >, eTE
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(which we now know to be a divergent series) and the original series of the problem. The
limit of the ratios is
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because 5+ +5 approaches 0 as n approaches infinity, = 1 Again,
the limit of the ratios is a finite, positive number. The divergence of ZnZQ L +5 implies
the divergence of the original series of the problem.
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(3) Now we use the Ratio Test with the series ) ", a,, where a, = Y5> . Since
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an+1 = L5, we get
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The series converges because 1/2 < 1.
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(4) Here we use the Root Test with the series >~ a,, where a, = (34’;;_170) . The

computation
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implies that the series converges.
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(5) If ay, = z ((SZ)) !5 then a,4; = (n+ )(S(nz——;)') > and the ratio is
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Now we see
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The Ratio Test tells us that the series converges.
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(6) The inequalities 0 < |cos(n”)| < 1 imply 0 < —on < o0 Since ) 57 = Y (1/2)"
5 5
converges, the Comparison Test tells us that Z M = Z cos(n’) converges. This
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says that Z % converges absolutely. Therefore, Z COS;—:) converges.

(7) The function " \/inia: is positive, decreasing and continuous for z > 2. We use the
Integral Test. The substitution u = Inz gives

/ dz = [ w2 du=2u"?+C=2(Inz)/?+C.
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Since the integral diverges, we conclude that the given series diverges also.
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which equals - N——|—4 The required sum is the limit as N — oo of the partial sums,

and that limit is 7
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(9) If we apply the Ratio Test to the series Z — then we find
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Therefore, Z — converges by the Ratio Test. The convergence of this series implies
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(10) Here we can use rationalization:
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(11) We will evaluate lim (1 - —0> . It is easier to evaluate lim In [(1 - —) ] first.
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L’Hopital’s Rule implies that lim In {(1 — —) } is equal to
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Applying the exponential function to this, we obtain lim (1 — —) = ¢ 19, This implies
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(12) When f(z) = V&
Therefore, f(4) = 2,
polynomial is

= 2!/ we get f'(x) = 52712, f'(x) = Fa32, [O)(x) = Fa75/2
f( ) 1/4, f"(4) = —1/32, f3)(4) = 3/256. The third Taylor
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Since f®)(z) = —%m_”?, values of u between 4 and 5 will satisfy the condition | f(4) (u)| <
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(13) Since the Maclaurin series of cosz begins with
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The Maclaurin series of cos(z®) begins with
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Therefore, the Maclaurin series of 23 cos(z®) begins with

(14) Since the binomial series of = (1 + x)~/? begins with
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the Maclaurin series of ——— begins with
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(15) The Ratio Test with a,, = % gives
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The power series converges absolutely if 3| — 2| < 1, which is the same as 5/3 < = < 7/3.
Now we check the endpoints 5/3 and 7/3. If = 5/3 then the series is

= 3|z —2|.
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which diverges by the Integral Test. If 2 = 7/3 then the series is
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which converges by the Leibniz Test. Therefore, the interval of convergence is 5/3 < = <

7/3.
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(16) Here we have f(z) = % + 3 fl(z) = % ~ 5. Note that 1+ (f'(z))? is equal to
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(17) Using z'(t) = 3sin® tcost, y'(t) = —3cos’ tsint we get

(' (1)* + (y'(t))* = 9sin? tcos® t + 9cos® tsin? ¢
= 9sin” ¢ cos® t(sin” t + cos® t) = 9sin® t cos® £.

Since 0 < t < 7/4, we obtain that the length is

m/4 w/4 .. 2, w/4
/ V(@' ()2 + (v (1) dt = / 3sintcostdt = 381; t = Z
0 0

0

(18) From z'(t) = sint and y'(t) = 1 — cost we obtain

(' (1))* + (' (t))* =sin?t + 1 — 2cost + cos® t = 2(1 — cost) = 4sin?(t/2).

Since 0 < t < 7/2, we conclude v/(z'(t))2 4 (y'(t))? = 2sin(¢/2). The substitution u = ¢/2
allows us to write the required surface area in the form
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and this is
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The computations
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and
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imply that the surface area is

V2 o V2 V2 202
167 (7 -1 7) — 167 <E> = (T —2m/§> .

(19) We rotate y = vV R?> — 22, —R < x < R about the z-axis. Since % = ——\/ﬁ, the

required area is
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(20) The curve intersects itself when (x(t1),y(t1)) = (z(t2),y(t2)) with t; # t5. Renaming
the t’s if necessary, we may assume t; < t5. We have to solve for t1, t5 in the equations

£t =13 —ty, 4t =443
The second equation implies ¢t = =£t;. Since t; < t3, we must have to = —t; and
t;1 < 0 < to. In view of this, the equation ¢3 —t; = ¢3 — t, implies t3 —t; = —t + ¢, which

is equivalent to t3 —t; = 0. Since ¢; < 0, we get t; = —1. In addition, t, = —t; = 1. The
curve crosses itself at

(z0,50) = (z(=1),y(-1)) = (x(1),y(1)) = (0,4).
Since the slope of every tangent line is

dy dy/dt 8t
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we conclude that the slopes of the two tangent lines at (zo,yo) = (0,4) are —4 and 4,
corresponding to t = —1 and ¢t = 1. Therefore, the two tangent lines are

y—4=-4x, y—4=4zx.



