Formula Sheet for Math 151, Exam 2

Lines: If $(x_1, y_1), (x_2, y_2)$ lie on a line L, the slope of L is $m = \frac{y_2 - y_1}{x_2 - x_1}$ and the equation is $y - y_1 = m(x - x_1)$.
Distance: (x_1, y_1) to (x_2, y_2) : $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$. Circle, center (a, b) , rad. $r: (x - a)^2 + (y - b)^2 = r^2$.
Trig: In a right triangle: $\sin \theta = \frac{opp}{hyp} \cos \theta = \frac{adj}{hyp} \tan \theta = \frac{opp}{adj} = \frac{\sin \theta}{\cos \theta} \cot \theta = \frac{1}{\tan \theta} \sec \theta = \frac{1}{\cos \theta} \csc \theta = \frac{1}{\sin \theta}$.
$\cos x$
Periodicity: $sin(x + 2\pi) = sin(x)$, $cos(x + 2\pi) = cos(x)$, $tan(x + \pi) = tan(x)$. Identities: $\sin^2 x + \cos^2 x = 1$, $1 + \tan^2 x = \sec^2 x$, $\sin(2x) = 2 \sin x \cos x$, $\cos(2x) = \cos^2 x - \sin^2 x$. Addition: $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$ $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$ $\pi \approx 3.1416$.
$a^{v+w} = a^v a^w$, $a^{vw} = (a^v)^w$, Exponentials and logarithms: $a, b, t, u, y > 0, r, v, w, x$ any real numbers: $a^0 = 1$, $(ab)^v = a^v b^v$, $\log_a(t) = \ln(t)/\ln(a)$. $e^x = y$ is equivalent to $x = \ln y$, $e^{\ln y} = y$, $a^{-v} = 1/a^{v}$, $\ln(e^x) = x$. $\ln(tu) = \ln(t) + \ln(u)$, $\ln(u^r) = r \ln(u)$, $\ln(1/u) = -\ln(u)$, $\ln(1) = 0$, $e \approx 2.718$.
Squeeze Theorem: If $f(x) \le g(x) \le h(x)$ near $x = a$ and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$.
Intermediate Value Theorem: If f is continuous on [a, b] and N is between $f(a)$ and $f(b)$, there is a number c in [a, b], such that $f(c) = N$. Corollary: If f changes sign from a to b, then $f(c) = 0$ with c between a and b.
Definition of the Derivative: $f'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h};$ $f'(a) = \lim_{x\to a} \frac{f(x) - f(a)}{x - a}.$ f(x) f'(x) f'(x) f'(x) f(x) f(x) f(x) f'(x) $\overline{a^x}$ $(\ln a)a^x$ $\sec^2 x$ $\sin^{-1}(x)$ $1/\sqrt{1-x^2}$ Ω c , const. $\tan x$ $rx^{\overline{r-1}}$ x^r $1/(\ln(a) \cdot x)$ $\frac{1}{(x^2+1)}$ $\log_a(x)$ $\sec x \tan x$ $\sec x$ tan^- $\left(x\right)$ e^x $-\csc^2 x$ e^x $1/(x \sqrt{x^2-1})$ $\sin x$ $\cos x$ $\cot x$ $\sec^{-1}(x)$ 1/x ln x $-\sin x$ $-\csc x \cot x$ $-1/\sqrt{1-x^2}$ $\cos x$ csc x $\cos^{-1}(x)$
Rules of Differentiation: $\frac{d}{dx}(cu) = c\frac{du}{dx}$, c a const., or $(cf)'(x) = cf'(x)$. $\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$, or $(f+g)'(x) = f'(x) + g'(x)$. Product Rule: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$, or $(fg)'(x) = f(x)g'(x) + f'(x)g(x)$. Quotient Rule: $\frac{d}{dx}(u/v) = (v\frac{du}{dx} - u\frac{dv}{dx})/v^2$, or $(f/g)'(x) = (g(x)f'(x) - f(x)g'(x))/(g(x)^2)$.
Chain Rule: If $y = f(u)$ and $u = g(x)$, then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$, or $(f \circ g)'(x) = f'(g(x))g'(x)$. Replacing x by u and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u \frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx},$ $\frac{d}{dx}(\tan u) = (\sec^2 u) \frac{du}{dx}$
Bodies in Free Fall: If air resistance is neglected, then the height of a body in free fall near the surface of the earth is $s(t) = s_0 + v_0 t - gt^2/2$, where s_0 is the position at time $t = 0$, v_0 is the velocity at time $t = 0$, and g is the acceleration due to gravity with $g = 32 \text{ft/s}^2$ or $g = 9.8 \text{m/s}^2$.
Linear or Tangent Line Approximation (or Linearization) of $f(x)$ at $x = a$ is $L(x) = f(a) + f'(a)(x - a)$.
Newton's Method to approximate a solution r of $f(x) = 0$. Choose a point x_0 close to r. Calculate the terms $x_0, x_1, x_2, x_3, \ldots$ of the sequence defined recursively by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.
Rolle's Theorem: Suppose f is a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b) . If $f(a) = f(b) = 0$, then $f'(c) = 0$ for some c in (a, b) .
Mean Value Theorem: Suppose f is a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b) . Then there is a point c in (a, b) such that $f(b) - f(a) = f'(c)(b - a)$.
First Derivative Test: Suppose that f is a differentiable function and $f(c) = 0$. (a) If f' changes sign from + to – at $x = c$, a local maximum occurs at $x = c$. (b) If f' changes sign from – to + at $x = c$, a local minimum occurs. (c) If f' does not change sign at $x = c$, neither a local maximum or minimum occurs at $x = c$.
Second Derivative Test: Suppose that f is a twice differentiable function and $f'(c) = 0$. (a) If $f''(c) > 0$, a local minimum occurs at $x = c$. (b) If $f''(c) < 0$, a local maximum occurs. (c) If $f''(c) = 0$, the test fails.
L'Hôpital's Rule: If $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or $\frac{\pm \infty}{\pm \infty}$, then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$. (Here, a may be a finite pt. or $\pm \infty$.)
Integration or anti-differentiation: $\int f(x) dx = F(x) + C$ means that $F'(x) = f(x)$. Formulas can be found by reversing the differentiation formulas: $\int x^r dx = x^{r+1}/(r+1) + C$, if $r \neq -1$ and $\int x^{-1} dx = \ln x + C$.