Formula	Sheet	for	Math	151,	Exam	2
---------	-------	-----	------	------	------	----------

Lines: If $(x_1, y_1), (x_2, y_2)$ lie on a line L, the slope of L is $m = \frac{y_2 - y_1}{x_2 - x_1}$ and the equation is $y - y_1 = m(x - x_1)$.
Distance: (x_1, y_1) to (x_2, y_2) : $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$. Circle, center (a, b) , rad. r : $(x - a)^2 + (y - b)^2 = r^2$.
Trig: In a right triangle: $\sin \theta = \frac{opp}{hyp} \cos \theta = \frac{adj}{hyp} \tan \theta = \frac{opp}{adj} = \frac{\sin \theta}{\cos \theta} \cot \theta = \frac{1}{\tan \theta} \sec \theta = \frac{1}{\cos \theta} \csc \theta = \frac{1}{\sin \theta}.$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Periodicity: $\sin(x + 2\pi) = \sin(x)$, $\cos(x + 2\pi) = \cos(x)$, $\tan(x + \pi) = \tan(x)$. Identities: $\sin^2 x + \cos^2 x = 1$, $1 + \tan^2 x = \sec^2 x$, $\sin(2x) = 2 \sin x \cos x$, $\cos(2x) = \cos^2 x - \sin^2 x$.
Addition: $\sin(x\pm y) = \sin x \cos y \pm \cos x \sin y$ $\cos(x\pm y) = \cos x \cos y \mp \sin x \sin y$ $\pi \approx 3.1416.$
Exponentials and logarithms: $a, b, t, u, y > 0, r, v, w, x$ any real numbers: $a^{v+w} = a^v a^w, a^{vw} = (a^v)^w, a^{-v} = 1/a^v, a^0 = 1, (ab)^v = a^v b^v, \log_a(t) = \ln(t)/\ln(a).$ $e^x = y$ is equivalent to $x = \ln y, e^{\ln y} = y, \ln(e^x) = x.$ $\ln(tu) = \ln(t) + \ln(u), \ln(u^r) = r \ln(u), \ln(1/u) = -\ln(u), \ln(1) = 0, e \approx 2.718.$
Squeeze Theorem: If $f(x) \le g(x) \le h(x)$ near $x = a$ and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$.
Intermediate Value Theorem: If f is continuous on $[a, b]$ and N is between $f(a)$ and $f(b)$, there is a number c
in $[a, b]$, such that $f(c) = N$. Corollary: If f changes sign from a to b, then $f(c) = 0$ with c between a and b.
Definition of the Derivative: $f'(x) = \lim_{h \to 0} (f(x+h) - f(x))/h; f'(a) = \lim_{x \to a} (f(x) - f(a))/(x-a).$
$\begin{array}{ c c c c c c c c }\hline f(x) & f'(x) &$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\frac{\ln x}{\ln x} = \frac{1/x}{\ln x} = \frac{\cos x}{\ln x} = \frac{\cos^2 x}{\ln$
Rules of Differentiation: $\frac{d}{dx}(cu) = c\frac{du}{dx}$, c a const., or $(cf)'(x) = cf'(x)$. $\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$, or $(f+g)'(x) = f'(x) + g'(x)$. Product Rule: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$, or $(fg)'(x) = f(x)g'(x) + f'(x)g(x)$.
Quotient Rule: $\frac{d}{dx}(u/v) = \left(v\frac{du}{dx} - u\frac{dv}{dx}\right)/v^2$, or $(f/g)'(x) = (g(x)f'(x) - f(x)g'(x))/(g(x)^2)$.
Chain Rule: If $y = f(u)$ and $u = g(x)$, then $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$, or $(f \circ g)'(x) = f'(g(x))g'(x)$. Replacing x by
<i>u</i> and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u\frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}.$
<i>u</i> and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u\frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx},$
<i>u</i> and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u\frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}.$ Bodies in Free Fall: If air resistance is neglected, then the height of a body in free fall near the surface of the earth is $s(t) = s_0 + v_0t - gt^2/2$, where s_0 is the position at time $t = 0$, v_0 is the velocity at time $t = 0$, and g is
<i>u</i> and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u \frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}.$ Bodies in Free Fall: If air resistance is neglected, then the height of a body in free fall near the surface of the earth is $s(t) = s_0 + v_0t - gt^2/2$, where s_0 is the position at time $t = 0, v_0$ is the velocity at time $t = 0$, and g is the acceleration due to gravity with $g = 32$ ft/s ² or $g = 9.8$ m/s ² .
<i>u</i> and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u \frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}.$ Bodies in Free Fall: If air resistance is neglected, then the height of a body in free fall near the surface of the earth is $s(t) = s_0 + v_0 t - gt^2/2$, where s_0 is the position at time $t = 0, v_0$ is the velocity at time $t = 0$, and g is the acceleration due to gravity with $g = 32 \text{ft/s}^2$ or $g = 9.8 \text{m/s}^2$. Linear or Tangent Line Approximation (or Linearization) of $f(x)$ at $x = a$ is $L(x) = f(a) + f'(a)(x - a)$.
u and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u \frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}.$ Bodies in Free Fall: If air resistance is neglected, then the height of a body in free fall near the surface of the earth is $s(t) = s_0 + v_0 t - gt^2/2$, where s_0 is the position at time $t = 0, v_0$ is the velocity at time $t = 0$, and g is the acceleration due to gravity with $g = 32 \text{ft/s}^2$ or $g = 9.8 \text{m/s}^2$. Linear or Tangent Line Approximation (or Linearization) of $f(x)$ at $x = a$ is $L(x) = f(a) + f'(a)(x - a)$. Newton's Method to approximate a solution r of $f(x) = 0$. Choose a point x_0 close to r. Calculate the terms
<i>u</i> and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u\frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}.$ Bodies in Free Fall: If air resistance is neglected, then the height of a body in free fall near the surface of the earth is $s(t) = s_0 + v_0 t - gt^2/2$, where s_0 is the position at time $t = 0, v_0$ is the velocity at time $t = 0$, and g is the acceleration due to gravity with $g = 32 \text{ft/s}^2$ or $g = 9.8 \text{m/s}^2$. Linear or Tangent Line Approximation (or Linearization) of $f(x)$ at $x = a$ is $L(x) = f(a) + f'(a)(x-a)$. Newton's Method to approximate a solution r of $f(x) = 0$. Choose a point x_0 close to r . Calculate the terms $x_0, x_1, x_2, x_3, \ldots$ of the sequence defined recursively by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.
<i>u</i> and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u\frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}.$ Bodies in Free Fall: If air resistance is neglected, then the height of a body in free fall near the surface of the earth is $s(t) = s_0 + v_0 t - gt^2/2$, where s_0 is the position at time $t = 0$, v_0 is the velocity at time $t = 0$, and g is the acceleration due to gravity with $g = 32 \text{ft/s}^2$ or $g = 9.8 \text{m/s}^2$. Linear or Tangent Line Approximation (or Linearization) of $f(x)$ at $x = a$ is $L(x) = f(a) + f'(a)(x - a)$. Newton's Method to approximate a solution r of $f(x) = 0$. Choose a point x_0 close to r . Calculate the terms $x_0, x_1, x_2, x_3, \ldots$ of the sequence defined recursively by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. Rolle's Theorem: Suppose f is a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b) . If $f(a) = f(b) = 0$, then $f'(c) = 0$ for some c in (a, b) .
u and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u\frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}.$ Bodies in Free Fall: If air resistance is neglected, then the height of a body in free fall near the surface of the earth is $s(t) = s_0 + v_0 t - gt^2/2$, where s_0 is the position at time $t = 0$, v_0 is the velocity at time $t = 0$, and g is the acceleration due to gravity with $g = 32 \text{ft/s}^2$ or $g = 9.8 \text{m/s}^2$. Linear or Tangent Line Approximation (or Linearization) of $f(x)$ at $x = a$ is $L(x) = f(a) + f'(a)(x - a)$. Newton's Method to approximate a solution r of $f(x) = 0$. Choose a point x_0 close to r . Calculate the terms $x_0, x_1, x_2, x_3, \ldots$ of the sequence defined recursively by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. Rolle's Theorem: Suppose f is a function that is continuous on the closed interval $[a, b]$ and differentiable on
u and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u\frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}.$ Bodies in Free Fall: If air resistance is neglected, then the height of a body in free fall near the surface of the earth is $s(t) = s_0 + v_0 t - gt^2/2$, where s_0 is the position at time $t = 0$, v_0 is the velocity at time $t = 0$, and g is the acceleration due to gravity with $g = 32 \text{ft/s}^2$ or $g = 9.8 \text{m/s}^2$. Linear or Tangent Line Approximation (or Linearization) of $f(x)$ at $x = a$ is $L(x) = f(a) + f'(a)(x - a)$. Newton's Method to approximate a solution r of $f(x) = 0$. Choose a point x_0 close to r . Calculate the terms $x_0, x_1, x_2, x_3, \ldots$ of the sequence defined recursively by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. Rolle's Theorem: Suppose f is a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b) . If $f(a) = f(b) = 0$, then $f'(c) = 0$ for some c in (a, b) . Mean Value Theorem: Suppose f is a function that is continuous on the closed interval $[a, b]$ and differentiable
u and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u\frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}$. Bodies in Free Fall: If air resistance is neglected, then the height of a body in free fall near the surface of the earth is $s(t) = s_0 + v_0 t - gt^2/2$, where s_0 is the position at time $t = 0$, v_0 is the velocity at time $t = 0$, and g is the acceleration due to gravity with $g = 32 ft/s^2$ or $g = 9.8 m/s^2$. Linear or Tangent Line Approximation (or Linearization) of $f(x)$ at $x = a$ is $L(x) = f(a) + f'(a)(x - a)$. Newton's Method to approximate a solution r of $f(x) = 0$. Choose a point x_0 close to r . Calculate the terms $x_0, x_1, x_2, x_3, \ldots$ of the sequence defined recursively by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. Rolle's Theorem: Suppose f is a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b) . If $f(a) = f(b) = 0$, then $f'(c) = 0$ for some c in (a, b) . Mean Value Theorem: Suppose f is a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b) . Then there is a point c in (a, b) such that $f(b) - f(a) = f'(c)(b - a)$. First Derivative Test: Suppose that f is a differentiable function and $f(c) = 0$. (a) If f' changes sign from $+$ to $-$ at $x = c$, a local maximum occurs at $x = c$. (b) If f' changes sign from $-$ to $+$ at $x = c$, a local minimum
u and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u\frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u\frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u\frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sec^2 u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = (\sin u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = (\sin u)\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\sin^2 u)\frac{du}{dx}, \frac{d}{dx}(\sin u)\frac{du}{dx}(\cos u) = (\sin^2 u)\frac{du}{dx}, \frac{d}{dx}(\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u)\frac{du}{dx}(\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u)\frac{du}{dx}(\cos u)\frac{du}{dx}, \frac{d}{dx}(\sin u)\frac{d}{dx}(\cos u)\frac{du}{dx}$