Formula Sheet for Math 151, Final Exam

Lines: If $(x_1, y_1), (x_2, y_2)$ lie on a line L, the slope of L is $m = \frac{y_2 - y_1}{x_2 - x_1}$ and the equation is $y - y_1 = \frac{y_1 - y_1}{x_1 - x_1}$ $m(x-x_1).$ **Distance**, (x_1, y_1) to (x_2, y_2) : $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$. Circle, center (a, b), rad. $r: (x - a)^2 + (y - b)^2 = r^2$. **Trig**: In a right triangle: $\sin \theta = \frac{\text{opp}}{\text{hyp}}, \quad \cos \theta = \frac{\text{adj}}{\text{hyp}}, \quad \tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{\sin \theta}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta} \quad \sec \theta = \frac{1}{\cos \theta} \quad \csc \theta = \frac{1}{\sin \theta}.$ $3\pi/2 | 2\pi$ π -1 0 1 **Periodicity**: $\sin(x+2\pi) = \sin(x)$, $\cos(x+2\pi) = \cos(x)$, $\tan(x+\pi) = \tan(x)$. Identities: $\sin^2 x + \cos^2 x = 1$, $1 + \tan^2 x = \sec^2 x$, $\sin(2x) = 2 \sin x \cos x$, $\cos(2x) = \cos^2 x - \sin^2 x$. Addition: $\sin(x\pm y) = \sin x \cos y \pm \cos x \sin y$ $\cos(x\pm y) = \cos x \cos y \mp \sin x \sin y$ $\pi \approx 3.1416.$ **Inverses:** The range of $\sin^{-1} x$, $\tan^{-1} x$ and $\csc^{-1} x$ is the subset of $[-\pi/2, \pi/2]$ avoiding values that correspond to $x = \infty$. The range of the other inverse trig functions is a similar subset of $[0, \pi]$. **Exponentials and logarithms**: a, b, t, u, y > 0, r, v, w, x any real numbers: $a^{v+w} = a^v a^w$,

 $\begin{aligned} a^{vw} &= (a^v)^w, \ a^{-v} &= 1/a^v, \quad a^0 = 1, \quad (ab)^v = a^v b^v, \quad \log_a(t) = \ln(t)/\ln(a). \quad e^x = y \quad \text{is equivalent} \\ \text{to } x &= \ln y, \quad e^{\ln y} = y, \ln(e^x) = x. \quad \ln(tu) = \ln(t) + \ln(u), \quad \ln(u^r) = r \ln(u), \quad \ln(1/u) = -\ln(u), \\ \ln(1) &= 0, \quad e \approx 2.718. \end{aligned}$

Squeeze Theorem: If $f(x) \leq g(x) \leq h(x)$ near x = a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$.

Intermediate Value Theorem: If f is continuous on [a, b] and N is between f(a) and f(b), there is a number c in [a, b], such that f(c) = N. **Corollary:** If f changes sign from a to b, then f(c) = 0 with c between a and b.

Definition of the Derivative:	$f'(x) = \lim \frac{1}{2}$	$\frac{f(x+h) - f(x)}{h};$	$f'(a) = \lim A$	$\frac{f(x)-f(a)}{a}$.
	$h \rightarrow 0$	h i	$x \rightarrow a$	x - a

	f(x)	f'(x)	f(x)	f'(x)
	c, cc	onst.	0	a^x	$(\ln a)a^x$
	x	r	rx^{r-1}	$\log_a(x)$	$1/(\ln(a) \cdot x)$
	e	x	e^x	$\sin x$	$\cos x$
	ln	x	1/x	$\cos x$	$-\sin x$
	f(x)		f'(x)	f(x)	f'(x)
	f(x) $f'(x)$		J (~)	J (**)	
t	an x	$x = \sec^2 x$		$\sin^{-1}(x)$	$1/\sqrt{1-x^2}$
S	ec x		$x \tan x$	$\tan^{-1}(x)$	$1/(x^2+1)$
C	$\cot x$		$\csc^2 x$	$\sec^{-1}(x)$	$1/(x \sqrt{x^2-1})$
C	$\csc x$	-cs	$c x \cot x$	$\cos^{-1}(x)$	$-1/\sqrt{1-x^2}$

CONTINUED ON THE NEXT PAGE

Rules of Differentiation: $\frac{d}{dx}(cu) = c\frac{du}{dx}$, c a const., or (cf)'(x) = cf'(x). $\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$, or (f+g)'(x) = f'(x) + g'(x). **Product Rule**: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$, or (fg)'(x) = f(x)g'(x) + f'(x)g(x). **Quotient Rule**: $\frac{d}{dx}(u/v) = \left(v\frac{du}{dx} - u\frac{dv}{dx}\right)/v^2$, or $(f/g)'(x) = (g(x)f'(x) - f(x)g'(x))/(g(x)^2)$. **Chain Rule**: If y = f(u) and u = g(x), then $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$, or $(f \circ g)'(x) = f'(g(x))g'(x)$. Replacing x by u and multiplying by $\frac{du}{dx}$, we can apply the Chain Rule to all boxed derivative formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}, \frac{d}{dx}(e^u) = e^u\frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}, \frac{d}{dx}(\sin u) = (\cos u)\frac{du}{dx}, \frac{d}{dx}(\cos u) = -(\sin u)\frac{du}{dx}, \frac{d}{dx}(\tan u) = (\sec^2 u)\frac{du}{dx}$.

Bodies in Free Fall: If air resistance is neglected, then the height of a body in free fall near the surface of the earth is $s(t) = s_0 + v_0 t - gt^2/2$, where s_0 is the position at time t = 0, v_0 is the velocity at time t = 0, and g is the acceleration due to gravity with g = 32 ft/s² or g = 9.8 m/s².

Linear or Tangent Line Approximation (or Linearization) of f(x) at x = a is L(x) = f(a) + cf'(a)(x-a).

Newton's Method to approximate a solution r of f(x) = 0. Choose a point x_0 close to r. Calculate the terms $x_0, x_1, x_2, x_3, \ldots$ of the sequence defined recursively by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

Rolle's Theorem: Suppose f is a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If f(a) = f(b) = 0, then f'(c) = 0 for some c in (a, b).

Mean Value Theorem: Suppose f is a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b). Then there is a point c in (a, b) such that f(b) - f(a) =f'(c)(b-a).

First Derivative Test: Suppose that f is a differentiable function and f(c) = 0. (a) If f' changes sign from + to - at x = c, a local maximum occurs at x = c. (b) If f' changes sign from - to + at x = c, a local minimum occurs. (c) If f' does not change sign at x = c, neither a local maximum or minimum occurs at x = c.

Second Derivative Test: Suppose that f is a twice differentiable function and f'(c) = 0. (a) If f''(c) > 0, a local minimum occurs at x = c. (b) If f''(c) < 0, a local maximum occurs. (c) If f''(c) = 0, the test fails.

L'Hôpital's Rule: If $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or $\frac{\pm \infty}{\pm \infty}$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$. (Here, a may be a finite pt. or $\pm \infty$.)

Integration or anti-differentiation: $\int f(x) dx = F(x) + C$ means that F'(x) = f(x). Formulas can be found by reversing the differentiation formulas: $\int x^r dx = x^{r+1}/(r+1) + C$, if $r \neq -1$ and $\int x^{-1} dx = \ln |x| + C.$