$$
\sin(0) = 0; \quad \sin(\pi/6) = 1/2; \quad \sin(\pi/4) = \sqrt{2}/2; \quad \sin(\pi/3) = \sqrt{3}/2; \quad \sin(\pi/2) = 1
$$

\n
$$
\cos(0) = 1; \quad \cos(\pi/6) = \sqrt{3}/2; \quad \cos(\pi/4) = \sqrt{2}/2; \quad \cos(\pi/3) = 1/2; \quad \cos(\pi/2) = 0
$$

\n
$$
\cos^2 x + \sin^2 x = 1; \quad 1 + \tan^2 x = \sec^2 x; \quad 1 + \cot^2 x = \csc^2 x
$$

\n
$$
\sin(2x) = 2 \sin x \cos x; \quad \cos(2x) = \cos^2 x - \sin^2 x
$$

\n
$$
\cos^2 x = \frac{1}{2}(1 + \cos(2x)); \quad \sin^2 x = \frac{1}{2}(1 - \cos(2x))
$$

\n
$$
\sin A \cos B = \frac{1}{2}[\sin(A - B) + \sin(A + B)]
$$

\n
$$
\sin A \sin B = \frac{1}{2}[\cos(A - B) - \cos(A + B)]
$$

\n
$$
\cos A \cos B = \frac{1}{2}[\cos(A - B) + \cos(A + B)]
$$

\n
$$
\int \sec x \, dx = \ln |\sec x + \tan x| + C; \quad \int \csc x \, dx = \ln |\csc x - \cot x| + C
$$

\nIf T_N , M_N , S_N are the Trapezoidal, Midpoint and Simpson's approximations, then

$$
T_N = \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{N-2}) + 2f(x_{N-1}) + f(x_N)] ;
$$

\n
$$
M_N = \Delta x [f(c_1) + f(c_2) + \dots + f(c_N)] \text{ where } c_j = (x_{j-1} + x_j)/2 ;
$$

\n
$$
S_N = \frac{\Delta x}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{N-2}) + 4f(x_{N-1}) + f(x_N)].
$$

\nIf $I = \int_a^b f(x) dx$ then

$$
|T_N - I| \le \frac{K_2(b-a)^3}{12N^2} \ , \quad |M_N - I| \le \frac{K_2(b-a)^3}{24N^2} \ , \quad |S_N - I| \le \frac{K_4(b-a)^5}{180N^4} \ .
$$

The length of the curve $y = f(x)$, $a \le x \le b$ is equal to $\int_a^b \sqrt{1 + (f'(x))^2} dx$. The area of the surface obtained by rotating the curve $y = f(x)$, $a \le x \le b$ about the x-axis is equal to $\int_a^b 2\pi f(x)\sqrt{1 + (f'(x))^2} dx$.

The length of the parametric curve $(x(t), y(t))$, $a \le t \le b$ equals $\int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} dt$. If a curve is given in polar form by $r = f(\theta)$ then the area bounded by $r = f(\theta)$, $\theta = \alpha$ and $\theta = \beta$ is \int_{α}^{β} 1 $\frac{1}{2}r^2 d\theta = \int_{\alpha}^{\beta}$ 1 $\frac{1}{2}(f(\theta))^2 d\theta$. The length of the polar curve $r = f(\theta)$ between $\theta = \alpha$ and $\theta = \beta$ is \int_{α}^{β} $\sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{\alpha}^{\beta} \sqrt{(f(\theta))^2 + (f'(\theta))^2} d\theta.$

Newton's Law of Cooling is given by $\frac{dT}{dt} = -k(T - T_0)$, where T is the temperature and T_0 is the ambient temperature. The balance P in an annuity is given by $\frac{dP}{dt} = r(P - N/r)$, where r is the interest rate and N is the rate of withdrawal.

The *nth* Taylor polynomial of $f(x)$ with center a is $T_n(x) = \sum_{n=1}^{n}$ $k=0$ $f^{(k)}(a)$ $k!$ $(x-a)^k$. If $|f^{(n+1)}(u)| \leq K$ for all u between a and x, then $|f(x) - T_n(x)| \leq K$ $|x-a|^{n+1}$ $\frac{c-a_1}{(n+1)!}$.