
Math 152, Fall 2009, Review Problems for Midterm 2: Solutions

Part I. Integration and Differential Equations

(1) Improper Integrals. Evaluate those of the following integrals which
converge.

(a)

∫ ∞

1

dx

x + x3

1
x+x3 = 1

x− x
1+x2 : the indefinite integral is ln(x)− 1

2 ln(1+x2) = ln
(

x√
1+x2

)

,

and the definite integral is ln
(

x√
1+x2

)∣

∣

∣

∞

1
.

Since limb→∞
x√

1+x2
= 1, the integral converges to ln(1) − ln(1/

√
2) =

1
2 ln 2.

(b)

∫ ∞

0

x2dx

e2x

After the substitution u = 2x, this is equal to (1/8)

∫ ∞

0

x2dx

ex
.

Integrating by parts twice,

∫

x2e−xdx = x2(−e−x) −
∫

(2x) · (−e−x)dx =

−x2e−x +2

∫

xe−xdx = −x2e−x +2(x(−e−x)−2

∫

1 ·(−e−x)dx = −x2e−x−
2xe−x − 2e−x

The limit of this function as x → ∞ is 0, and at x = 0 it equals −2, so

(1/8)

∫ ∞

0
x2e−xdx is 1/4.

(c)

∫ ∞

−∞

1

1 + x2

tan−1(x)|∞−∞ = (π/2) − (−π/2) = π.

(d)

∫ π/2

0
sec xdx

ln | sec x+tan x||π/2
0 : as x → π/2−, we have secx+tan x = (1+sin x)/ cos x,

which diverges toward +∞; and so the integral diverges.

(e)
∫ 1
−1

1
x2 dx

As this has a discontinuity at 0, the integral must be written as

∫ 0

−1

1

x2
dx+

∫ 1

0

1

x2
dx. These integrals diverge by the p-Test.

(f)

∫ 1

0
ln xdx

∫ 1

0
ln xdx = (x ln x − x)|10 = (−1) − lim

a→0+
a ln a = −1:

lima→0+ a ln a = 0 by l’Hôpital’s rule.
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(g)

∫ ∞

3

dx

(x3 − x)1/4

By comparison with a suitable multiple of 1/x3/4, this diverges.
The comparison goes like this: x ≤ x3/9, (x3 − x)1/4 ≥ ((8/9)x3)1/4 =

(8/9)1/4x3/4, 1
x3−x ≤ (9/8)1/4 1

x3/4 .
Really, it is just a variation on the Limit Comparison Test.

(h)

∫ ∞

0

ln(x)

1 + x2
dx

With the change of variable u = ln x this becomes

∫ ∞

−∞

ueudu

1 + e2u
=

∫ ∞

−∞

udu

eu + e−u

This converges by comparison with ue−u on [0,∞) and with ueu on (−∞, 0].
As this is an odd function integrated on a symmetrical interval, the value

is 0.

(2) Arc length
Find the perimeter of the cardioid r = 1 − cos θ.

dr/dθ = sin θ, ds =
√

(1 − cos θ)2 + sin2 θ =
√

2 − 2 cos θ. As sin2(θ/2) =
1−cos θ

2 , we find 2 − 2 cos θ = 4 sin2(θ/2) and ds = 2| sin(θ/2)|.

So we can find the perimeter:

∫ 2π

0
ds =

∫ 2π

0
2 sin(θ/2)dθ = −4 cos(θ/2)|2π

0 =

8.

(3) Arc length
Our goal in this problem is to design a test question of the following type:

“Find the length of the graph of the function y = cx2 − ln x over the interval
[2, 3].”
First we must find a value of c for which this problem can be solved exactly;

and then we want to know the answer.

y′ = 2cx − (1/x), ds =
√

1 + (2cx − (1/x))2.
We need 1+ (2cx− (1/x)2 to be a perfect square. We will choose c so that

1 + (2cx − (1/x))2 = (2cx + (1/x))2

and this boils down to 1 − 4c = 4c or c = 1/8.
So with c = 1/8, the arc length of the curve given by y = x2/8 − lnx over

[2, 3] is

∫ 3

2

√

(2(1/8)x + 1/x)2dx =

∫ 3

2
(x/4 + 1/x)dx = 5/8 + ln(3/2).
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(4) Parametric equations
Find a parametrization x = f(t), y = g(t) of the ellipse 9x2 + 4y2 = 36.

Since this is equivalent to (x/2)2 + (y/3)2 = 1, it is natural to take x/2 =
cos t, y/3 = sin t, so

x = 2cos t; y = 3 sin t

(5) Self-intersections and tangent lines.

(a) The curve given parametrically by x = t2 − 9, y = t3 − t crosses itself
at a point P . Find the coordinates of that point, and the angle between the
curves at that point.

The point P : Suppose we pass through P at t = t1 and t = t2 (with
t1 6= t2). Then x(t1) = x(t2) and y(t1) = y(t2).
The first equation gives t2 = −t1, and then the second gives y(t1) = 0. So

t1 = 0, 1, or −1, and t2 = −t1. Hence t1, t2 = ±1, in some order, and the
point P is (−8, 0).

The angle between the curves

First we find the tangent lines t = 1 and t = −1. We have dy/dx =
3t2 − 1

2t
.

The slopes at t = ±1 are 1 and −1. The lines are y = x+8 and y = −(x+8).
These lines are perpendicular, so the curves are perpendicular.

Figure 1: A Self-Intersection
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(6) Area
Find the area between the circle r = 2cos θ and the cardioid r = 1 + cos θ.

The circle is inside the cardioid, so we calculate the area of the cardioid
and subtract π.

Figure 2: Circle inside a cardioid

Cardioid:

∫ 2π

0
(1/2)(1+cos θ)2dθ = (3/2)π after expanding and integrating

each term.
Cardioid−circle: (3/2)π − π = π/2

(7) Surface area
Find the area of the surface obtained by rotating the curve y =

√
x + 1,

1 ≤ x ≤ 5 about the x-axis.

ds =
√

1 + 1
4(x+1)dx =

√

4x+5
4(x+1)dx

∫ 5

1

(

2π
√

x + 1
)

·
√

4x + 5

4(x + 1)
dx = π

∫ 5

1

√
4x + 5dx

We make the substitution u = 4x+5, and the integral comes out to (49/3)π.

(8) Volume
R is the region lying within the cardioid r = 1 + cos θ, to the right of

the y-axis. Write down a formula for the volume of the solid of revolution
obtained by rotating the region R about the x-axis.

Use the polar equation for the curve to write the volume integral

∫ 2

0
πy2dx

in terms of θ. Since y2 = r2 sin2 θ = (1 + cos θ)2 sin2 θ and dx = dx
dθdθ =

− sin θ(1+2 cos θ)dθ, the integral transforms into π

∫ 0

π/2
(−1) sin3 θ(1+cos θ)2(1+

2 cos θ)dθ.

(Note: Letting u = 1+cos(θ), the integral becomes π

∫ 2

1
(2 − u)u3(2u − 1)du =

(5/2)π.)
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(9) Initial value problems. In each case, find the solution explicitly.
(a) dx/dt = tan x, x(0) = π/6
∫

cot xdx =

∫

dt; this leads to sinx = Cet as the general solution, and

x = sin−1((1/2)et) as the particular solution.

(b) (4 + x3)1/2(dy/dx) = (xy)2, y(0) = −1
∫

dy

y2
=

∫

x2dx

(4 + x3)1/2

This leads to y = −1
(2/3)(4+x3)1/2+C

for the general solution, and C = −1/3,

y = −3
2
√

4+x3−1
for the particular soltuion

(10) Heat transfer
If coffee served at 50◦C in a room with temperature 25◦C cools to 30◦C in

an hour, how long did it take to cool to 35◦C?

The temperature difference T − 25 satisfies T − 25 = Cekt for constants C
and k.
Taking t = 0 we see C = 25. Taking t = 1 we have 5 = 25ek, k = − ln(5),

So when the customer drank the coffee, 10 = 25e− ln(5)t, t = − ln(2/5)
ln(5) .

On the calculator this becomes .569 hours—34 minutes and 10 seconds.

(11) Celestial mechanics and mathematical finance
For reasons known only to her, an astronomer invests all her funds at 5%

interest, and makes withdrawals at the rate of $20,000 per year. If the
balance will decline to 0 in 30 years, what was the initial investment?

P ′ = .05P − 20, 000; P ′ = .05(P − 400, 000); P = 400, 000 + Ce.05t

0 = 400, 000 + Ce.05(30); C = −400, 000/e1.5

Ans.: P (0) = 400, 000 + C = 400, 000(1 − 1/e1.5).
(about $310,000, says the calculator)

(12) Graphical Methods: Slope Fields
Sketch the slope field of ẏ = t2 − y for the region defined by t ∈ [−4, 4],

y ∈ [−16, 16], and then sketch the graphs of the corresponding initial value
problems with y(0) equal to −2, 1, or 2. Discuss the critical points on these
three curves.
The curves are shown below (the scales on the t- and y-axes are different).

The curves do not cross, but they appear to approach one another very
closely on the right. We can see one critical point on the top curve, two on
the middle curve, and none on the bottom curve.
The critical points satisfy y = t2. Two of them are close to (1, 1), the other

one is not far from (−2, 4):
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Figure 3: Slope field with integral curves

Part II. Taylor Polynomials, Sequences, and Series

(13) Taylor Polynomials and Infinite Series
(a) Find the Taylor polynomial of degree 5, T5(x), for the function f(x) =

ln(x), centered at x = 1, and evaluate T5(3/2).

n 0 1 2 3 4 5

f (n) ln(x) 1/x −1/x2 2/x3 −6/x4 24/x5

f (n)(a)/n! 0 1 -1/2 1/3 -1/4 1/5

T5 = (x− 1)− (1/2)(x− 1)2 + (1/3)(x− 1)3 − (1/4)(x− 1)4 + (1/5)(x− 1)5

T5(3/2) = (1/2) − (1/8) + (1/24) − (1/64) + 1/160

(b) Estimate the error | ln(3/2) − T5(3/2)|, using Taylor’s Error Bound.

The 6-th derivative is 120/x6 and on the interval [1, 3/2] this is bounded
by K = 120. So the error bound is (120/6!)(1/2)6 = (1/6)(1/64) = 1/384.

(c) The number ln(3/2) can be written exactly as the alternating sum

ln(3/2) =
(1/2)

1
− (1/2)2

2
+

(1/2)3

3
− (1/2)4

4
+

(1/2)5

5
− (1/2)6

6
+ · · · .

Use this fact to find another estimate for the error | ln(3/2) − T5(3/2)|.
The next term in the alternating series would be −(1/6)(1/2)6 = 1/384,

and its absolute value is the error bound.

(d) Which of these two estimates is the better one?

They are the same. In part (b), the bound K = 120 comes from the 6th
derivative at 1 (as it happens), so it is not only numerically the same, but
computed in the same way.

(Note: The error is actually about .0018.)
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(14) Limits of sequences Evaluate these limits:

(a) lim
n→∞

(

sin(n)

n

)

(b) lim
n→∞

(3n)1/n (c) lim
n→∞

n( sin(1/n))

(d) lim
n→∞

n2(1 − cos(1/n))) (e) lim
n→∞

(

1 − 5

n

)n

(a) 0, by the Squeeze Theorem:

∣

∣

∣

∣

sin(n)

n

∣

∣

∣

∣

< 1/n

(b) 1, since the logarithm (1/n) ln(3n) goes to 0 with n large (l’Hôpital).
(c) 1, since limx→−+ limx→0+

sinx
x = 1 (from Calc1, or l’Hôpital)

(d) 1, since limn→∞
1−cos(1/n)

1/n2 = limx→0+
1−cos x

x2 = 1/2 (Calc1, or l’Hôpital)

(e) e−5, by taking logarithms and applying l’Hôpital.

(15) The sum of an infinite Series
Prove that each of the following series converges, and calculate the sum.

(a)
∞
∑

n=2

3n + (−5)n

7n
(b)

∞
∑

n=4

1

n(n + 1)
(c)

∞
∑

n=4

1

n(n + 2)

Convergence: The first sum is a sum of two geometric series with ratios
less than 1 in absolute value, the 2nd and 3rd can be compared to a p-series
with p = 2. You could also compute the partial sums explicitly, and check
convergence directly.

Values:
(a)(3/7)2 1

1−(3/7) + (−5/7)2 1
1−(−5/7) = 13/21.

(b) 1/20+1/30+1/42+· · · = (1/4−1/5)+(1/5−1/6)+(1/6−1/7)+· · · = 1/4
(c) 1/24 + 1/35 + 1/48 + · · · = (1/2)[(1/4 − 1/6) + (1/5 − 1/7) + (1/6 −

1/8) + (1/7 − 1/9) + · · · = (1/2)(1/4 + 1/5) = 9/40.

Convergence via Partial sums
(a) 13/21 − [(3/4)(3/7)n − (5/12)(−5/7)n → 13/21
(b) 1/4 − 1/(n + 1) → 1/4
(c) 1/2([1/4 + 1/5] − [(1/(n + 1) + 1/(n + 2)] → 1/2[1/4 + 1/5].
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(16) Geometric Series
(a) A student applies the formula for the sum of a geometric series as

follows: 1 + 2 + 22 + 23 + 24 + · · · =
1

1 − 2
= −1. What went wrong?

Failure to check the convergence condition for the series: we do not have
|2| < 1!

(b) Applying the formula twice more, the same student calculates:

1 − 1 + 1 − 1 + 1 ∓ · · · =
∞
∑

n=0

(−1)n =
1

1 − (−1)
= 1/2

.99999 . . . = .9 ·
∞
∑

n=0

(.1)n = .9 · 1

1 − (.1)
= 1

Are these two conclusions correct?
As |.9| < 1, the second conclusion is correct.

(c) Write the repeating decimal 0.297297297... as a fraction.

This is .297
∞
∑

n=0

(.001)n. As .001 < 1, it sums to .297 1
1−.001 = 297/999 or

11/37

(17) The Limit Comparison Test
Use the Limit Comparison Test to determine which of the following con-

verges.

(a)
∞
∑

n=5

(1 − 5/n)n (b)
∞
∑

n=5

sin(1/n) (c)
∞
∑

n=5

(1 − cos(1/n))

(a) The series diverges by the Divergence Test: Problem 14(e).

(b) The series diverges by comparison with the harmonic series: Problem
14(a).

(c) The series converges by the p-Test with p = 2: Problem 14(d).
(The sum is approximately 0.778758796.)

(18) Summation: Error Estimates
Estimate the error involved in taking the sum of the first 10 terms of each

of the following series as an approximation to the full sum.

(a)
∞
∑

n=1

1

n2 + n
(b)

∞
∑

n=1

(−1)n

n2 + n

(a) The integral estimate:

∫ ∞

10

1

x2 + x
dx = ln(1.1) < .1

(b) The error estimate for this type of alternating series is just the absolute
value of the next term, 1/(112 + 11) = 1/132 (much closer).
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On the other hand: we can sum the series explicitly and get the error
exactly.

In (a), the “tail”
∞
∑

n=11

1

n2 + n
is 1/11, which is easier to calculate and more

accurate than the error estimate we found above.

And in (b), the sum
∞
∑

n=1

(−1)n

n2 + n
“telescopes” down to 2

∞
∑

n=1

(−1)n/n + 1 =

−(2 ln 2) + 1, so we could also calculate the error exactly here. The exact
value is uninteresting, but written as a decimal (.0041 . . .) it is informative.

(19) Absolute vs. Conditional Convergence
Define absolute convergence, and give an example of a series which con-

verges conditionally, but does not converge absolutely.

A series
∑∞

n=1 an converges absolutely if the corresponding series of non-
negative terms

∑∞
n=1 |an| converges.

The standard example of a convergent series which is not absolutely con-

vergent is the alternating harmonic series
∞
∑

n=1

(−1)n+1/n.

Comments:
The sum of the first n terms of the harmonic series is very approximately

ln(n) (diverging to ∞).
The partial sums of the alternating harmonic series converge slowly to

ln(2), too slowly to be useful: it takes about 1000 terms to get just 3 digits
accuracy.
If we want to compute ln(2) by a power series, we can use the Taylor

expansion of ln(x) around a = 1 taking x = 1/2 rather than x = 2, getting
a rapidly convergent expression for ln(1/2) = − ln(2).
The point: 1/2 is closer to 1 than 2 is.
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