
Notes on the Review Problems for Midterm 2

(1)(a) The partial fractions expansion
1

(x− 3)(x− 4)
=

1
x− 4

− 1
x− 3

gives

∫ ∞
5

dx

(x− 3)(x− 4)
= lim
b→∞

(
ln |x− 4| − ln |x− 3|

)∣∣∣b
5

= lim
b→∞

ln
(
b− 4
b− 3

)
+ ln 2 = ln 2.

(1)(b) L’Hôpital’s Rule lets us write

lim
x→0+

x lnx = lim
x→0+

lnx
1/x

= lim
x→0+

1/x
−1/x2

= lim
x→0+

−x = 0.

This can be rewritten lim
a→0+

a ln a = 0. Now we get

∫ 1

0

lnx dx = lim
a→0+

∫ 1

a

lnx dx = lim
a→0+

(x lnx− x)
∣∣∣1
a

= −1.

(1)(c) Integration by parts gives
∫
xne−x dx = −xne−x + n

∫
xn−1e−x dx. Now the fact

lim
b→∞

bne−b = 0 (which we get from l’Hôpital’s Rule) lets us write

∫ ∞
0

xne−x dx = n

∫ ∞
0

xn−1e−x dx.

Therefore,
∫ ∞

0

x3e−x dx = 3
∫ ∞

0

x2e−x dx = 6
∫ ∞

0

x1e−x dx = 6
∫ ∞

0

e−x dx = 6.

(1)(d) The substitution x = 3 tan θ gives∫
dx

9 + x2
=
∫

3 sec2 θ dθ

9(1 + tan2 θ)
=
∫
dθ

3
=
θ

3
+ C =

1
3

tan−1
(x

3

)
+ C.

Therefore,
∫ ∞
−∞

dx

9 + x2
= lim
b→∞

(
1
3

tan−1

(
b

3

)
− 1

3
tan−1

(
−b
3

))
=

1
3

(π
2
−
(
−π

2

))
=
π

3
.

(2)(a) For x ≥ 7 we know 0 < x− | cosx| ≤ x, hence
1

x− | cosx|
≥ 1
x
> 0. The divergence

of
∫ ∞

7

dx

x
implies the divergence of

∫ ∞
7

dx

x− | cosx|
.

(2)(b) For x ≥ 5 we know 0 <
1
ex2 <

1
ex

. The convergence of
∫ ∞

5

dx

ex
(which is just∫ ∞

5

e−x dx) implies the convergence of
∫ ∞

5

dx

ex2 .
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(3) The length is∫ 2π

0

√
r2 + (dr/dθ)2 dθ =

∫ 2π

0

√
(1− cos θ)2 + sin2 θ dθ =

∫ 2π

0

√
2− 2 cos θ dθ

= 2
∫ 2π

0

√
1− cos θ

2
dθ = 2

∫ 2π

0

√
sin2(θ/2) dθ

= 2
∫ 2π

0

| sin(θ/2)| dθ = 2
∫ 2π

0

sin(θ/2) dθ = 8.

(4) The area is
1
2

∫ 2π

0

(1− cos θ)2 dθ =
1
2

∫ 2π

0

1− 2 cos θ+ cos2 θ dθ =
1
2

(2π− 0 +π) =
3π
2

.

(5) The substitution u = 1 + 9
4 (x+ 2) leads to

length =
∫ 1

0

√
1 +

9
4

(x+ 2) dx =
8
27

(
11
2

+
9x
4

)3/2 ∣∣∣∣1
0

.

(6) A sphere with radius R is obtained by rotating the semicircle y =
√
R2 − x2, −R ≤

x ≤ R about the x-axis. In this case,√
1 +

(
dy

dx

)2

=

√
1 +

(
−x√
R2 − x2

)2

=

√
R2

R2 − x2
=

R√
R2 − x2

.

The surface area is 2π
∫ R

−R

√
R2 − x2 · R√

R2 − x2
dx = 4πR2.

(7) Multiplying r = sin θ by r, we get r2 = r sin θ, which is x2 + y2 = y. This is (x− 0)2 +
(y − 1/2)2 = (1/2)2. The center of the circle is (0, 1/2). The radius of the circle is 1/2.

(8) We can use x =
6 cos t

3
, y =

6 sin t
4

, 0 ≤ t ≤ 2π.

(9) The length is
∫ 2

1

√
4t2 + 9t4 dt =

∫ 2

1

t
√

4 + 9t2 dt. We can compute this integral using

the substitution u = 4 + 9t2.

(10)(a)
dx

dt
= tanx leads to

∫
cosx dx

sinx
=
∫

1 dt, ln | sinx| = t+ C, | sinx| = eteC = Bet,

where B = eC is a constant. Now we get sinx = ±Bet = Aet, where A is a constant.
Substituting t = 0 and x = π/6, we get 1/2 = A. The initial value problem is solved by
x = sin−1((1/2)et).

(10)(b) (4 +x3)1/2 dy

dx
= (xy)2 leads to

∫
dy

y2
=
∫

x2

(4 + x3)1/2
dx, −1

y
=

2
3

(4 +x3)1/2 +C.

Substituting x = 0 and y = −1, we get C = −1
3

. The initial value problem is solved by

y =
3

1− 2
√

4 + x3
.
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(11) The temperature T of the coffee is given by T = 25 + Ce−kt. The initial condition
T (0) = 50 implies C = 25. Now we know that the temperature T of the coffee is given by
T = 25 + 25e−kt. Substituting t = 1, we get 30 = 25 + 25e−k, which implies k = ln 5. The
problem asks us to find t such that 40 = 25 + 25e−kt. This last equation gives e−kt = 3/5,
hence −kt = ln(3/5). We solve for t using k = ln 5.

(12) We know P (t) = 20,000
.05 +Ce(.05)t and P (30) = 0. This gives us C = −(400, 000)e−3/2.

The initial balance is P (0) = 400, 000− (400, 000)e−3/2.

(13) Since f(x) = x−1, we get f ′(x) = −x−2, f ′′(x) = 2x−3, f ′′′(x) = −6x−4. This implies
f(1) = 1, f ′(1) = −1, f ′′(1) = 2, f ′′′(1) = −6. Now we know

T3(x) = 1 + (−1)(x− 1) +
2(x− 1)2

2
+
−6(x− 1)3

6
= 1− (x− 1) + (x− 1)2 − (x− 1)3.

We know |f (4)(u)| = 24|u−5| ≤ 24 when 1 ≤ u ≤ 3/2. This says that we can use K = 24.
This implies

|f(3/2)− T3(3/2)| ≤ 24|3/2− 1|4

4!
=

1
16
.

(14)(a) The inequalities −1 ≤ sinn ≤ 1 lead to − 1
n
≤ sinn

n
≤ 1
n

. Since lim
n→∞

− 1
n

= 0 =

lim
n→∞

1
n

, the Squeeze Theorem implies lim
n→∞

sinn
n

= 0.

(14)(b) L’Hôpital’s Rule gives lim
x→∞

ln
(
(3x)1/x

)
= lim
x→∞

ln(3x)
x

= lim
x→∞

1/x
1

= 0. Exponen-

tiating this, we get lim
x→∞

(3x)1/x = e0 = 1. This implies lim
n→∞

(3n)1/n = 1.

(14)(c) L’Hôpital’s Rule gives

lim
x→∞

ln
((

1− 5
x

)x)
= lim
x→∞

x ln
(

1− 5
x

)
= lim
x→∞

ln
(
1− 5

x

)
1/x

= lim
x→∞

(
5/x2

1−5/x

)
−1/x2

= −5.

Exponentiating this, we get lim
x→∞

(
1− 5

x

)x
= e−5. This implies lim

n→∞

(
1− 5

n

)n
= e−5.

(14)(d) Since lim
x→0

sinx
x

= 1 and lim
n→∞

1/n = 0, we conclude lim
n→∞

sin(1/n)
1/n

= 1. This is

equivalent to lim
n→∞

n sin(1/n) = 1.

(14)(e) L’Hôpital’s Rule gives lim
x→0

1− cosx
x2

= lim
x→0

sinx
2x

=
1
2

. Since lim
n→∞

1/n = 0, we

conclude lim
n→∞

1− cos(1/n)
(1/n)2

=
1
2

. This is equivalent to lim
n→∞

n2(1− cos(1/n)) =
1
2

.
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(15) Since | 1
1000 | < 1, the formula for the sum of a geometric series gives

5.273273273 . . . = 5 +
273
1000

+
273

(1000)2
+

273
(1000)3

+ · · ·

= 5 +
273
1000

(
1 +

1
1000

+
(

1
1000

)2

+
(

1
1000

)3

+ · · ·

)

= 5 +
273
1000

(
1

1− 1
1000

)
= 5 +

273
999

=
5268
999

.

(16)(a)
∞∑
n=3

2n

3n+1
=

23

34

(
1 +

2
3

+
(

2
3

)2

+
(

2
3

)3

+ · · ·

)
=

23

34
· 1

1− 2/3
=

8
27

.

(16)(b)
N∑
n=4

1
n(n− 1)

=
N∑
n=4

(
1

n− 1
− 1
n

)
=

1
3
− 1
N

because the other terms cancel out in

pairs. Now

∞∑
n=4

1
n(n− 1)

= lim
N→∞

N∑
n=4

1
n(n− 1)

= lim
N→∞

(
1
3
− 1
N

)
=

1
3
.

(17)(a) Since
1√
n

is decreasing and approaches 0, the Leibniz Test tells us that
∞∑
n=5

(−1)n−1

√
n

converges.

(17)(b)
∫ ∞

5

dx

x(lnx)
= lim
b→∞

ln(lnx)
∣∣∣∣b
5

=∞, hence
∞∑
n=5

1
n(lnn)

diverges by the Integral Test.

(17)(c)
∫ ∞

5

dx

x(lnx)3/2
= lim

b→∞
−2(lnx)−1/2

∣∣∣∣b
5

= 2(ln 5)−1/2 < ∞, hence
∞∑
n=5

1
n(lnn)3/2

converges by the Integral Test.

(17)(d) Since the answer to 14(c) is lim
n→∞

(
1− 5

n

)n
= e−5 6= 0, the Test For Divergence

says that
∞∑
n=4

(
1− 5

n

)n
diverges.

(17)(e) We do a limit comparison with the series
∞∑
n=4

1
n

. The answer to 14(d) says

lim
n→∞

sin(1/n)
1/n

= 1. Since this limit is positive and finite, we conclude divergence of
∞∑
n=4

sin(1/n) from the divergence of
∞∑
n=4

1
n

.
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(17)(f) We do a limit comparison with the series
∞∑
n=4

1
n2

. The answer to 14(e) says

lim
n→∞

1− cos(1/n)
1/n2

=
1
2

. Since this limit is positive and finite, we conclude convergence of
∞∑
n=4

(
1− cos(1/n)

)
from the convergence of

∞∑
n=4

1
n2

.

(17)(g) Since |2/3| < 1, we know that
∞∑
n=2

2n

3n
=
∞∑
n=2

(
2
3

)n
converges. The Comparison

Test and 0 <
2n

3n + 1
<

2n

3n
allow us to conclude that

∞∑
n=2

2n

3n + 1
converges.

(17)(h) The Limit Comparison Test with
∞∑
n=2

1
n2

is successful because

lim
n→∞

n2

n4−n3−4
1
n2

= lim
n→∞

n4

n4 − n3 − 4
= 1,

which is a positive and finite limit. Since the series
∞∑
n=2

1
n2

converges, we conclude that

the series
∞∑
n=2

n2

n4 − n3 − 4
converges.

(18)(a) If we take the sum of only the first 10 terms of
∞∑
n=1

1
n2

, then the absolute value of

the error is at most
∫ ∞

10

dx

x2
=

1
10

.

(18)(b) If we take the sum of only the first 10 terms of
∞∑
n=1

(−1)n

n2
, then the absolute value

of the error is at most the absolute value of the first omitted term, which is 1
112 .

(19) An infinite series
∑
an converges absolutely when

∑
|an| converges. An infinite series∑

an converges conditionally when it converges, but does not converge absolutely. The

series
∞∑
n=1

(−1)n

n
converges conditionally.

(20) Let L denote lim
n→∞

an. Taking the limit in the equation an+1 =
√

12 + an, we get

L =
√

12 + L. The number L must be a solution of the equation L2 = 12 + L. This
means that L must be either 4 or −3. The equation L =

√
12 + L excludes the possibility

L = −3. We must have L = 4.
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