Notes on the Review Problems for Midterm 2

 $(1)(a)$ The partial fractions expansion $\frac{1}{(a)(a)}$ $\frac{1}{(x-3)(x-4)}$ = 1 $x - 4$ − 1 $\frac{1}{x-3}$ gives

$$
\int_5^\infty \frac{dx}{(x-3)(x-4)} = \lim_{b \to \infty} \left(\ln|x-4| - \ln|x-3| \right) \Big|_5^b = \lim_{b \to \infty} \ln\left(\frac{b-4}{b-3}\right) + \ln 2 = \ln 2.
$$

 $(1)(b)$ L'Hôpital's Rule lets us write

$$
\lim_{x \to 0+} x \ln x = \lim_{x \to 0+} \frac{\ln x}{1/x} = \lim_{x \to 0+} \frac{1/x}{-1/x^2} = \lim_{x \to 0+} -x = 0.
$$

This can be rewritten $\lim_{a\to 0+} a \ln a = 0$. Now we get

$$
\int_0^1 \ln x \, dx = \lim_{a \to 0+} \int_a^1 \ln x \, dx = \lim_{a \to 0+} (x \ln x - x) \Big|_a^1 = -1.
$$

(1)(c) Integration by parts gives $\int x^n e^{-x} dx = -x^n e^{-x} + n \int x^{n-1} e^{-x} dx$. Now the fact $\lim_{b \to \infty} b^n e^{-b} = 0$ (which we get from l'Hôpital's Rule) lets us write

$$
\int_0^\infty x^n e^{-x} dx = n \int_0^\infty x^{n-1} e^{-x} dx.
$$

Therefore, \int_{0}^{∞} 0 $x^3 e^{-x} dx = 3 \int^{\infty}$ 0 $x^2 e^{-x} dx = 6 \int^{\infty}$ 0 $x^1e^{-x} dx = 6 \int_{-\infty}^{\infty}$ 0 $e^{-x} dx = 6.$ $(1)(d)$ The substitution $x = 3 \tan \theta$ gives

$$
\int \frac{dx}{9+x^2} = \int \frac{3\sec^2\theta \, d\theta}{9(1+\tan^2\theta)} = \int \frac{d\theta}{3} = \frac{\theta}{3} + C = \frac{1}{3}\tan^{-1}\left(\frac{x}{3}\right) + C.
$$

Therefore, \int_{0}^{∞} −∞ dx $\frac{dx}{9+x^2} = \lim_{b \to \infty} \left(\frac{1}{3}\right)$ 3 $\tan^{-1}\left(\frac{b}{2}\right)$ 3 -1 3 $\tan^{-1}\left(\frac{-b}{2}\right)$ 3 $\binom{1}{1} = \frac{1}{2}$ 3 $\frac{\pi}{2}$ 2 $-\left(-\frac{\pi}{2}\right)$ 2 $\binom{m}{n} = \frac{\pi}{n}$ 3 . (2)(a) For $x \ge 7$ we know $0 < x - |\cos x| \le x$, hence $\frac{1}{1}$ $\overline{x - |\cos x|}$ $>$ $\frac{1}{1}$ \boldsymbol{x} > 0. The divergence of \int^{∞} 7 dx \boldsymbol{x} implies the divergence of \int_{0}^{∞} 7 dx $\frac{dx}{x - |\cos x|}.$ $(2)(b)$ For $x \geq 5$ we know $0 < \frac{1}{x}$ $\frac{1}{e^{x^2}}$ < 1 $\frac{1}{e^x}$. The convergence of \int_5^∞ 5 dx $\frac{d\mathbf{x}}{e^x}$ (which is just \int^{∞} 5 e^{-x} dx) implies the convergence of $\int_{-\infty}^{\infty}$ 5 dx $\frac{d^{2}}{e^{x^{2}}}$.

(3) The length is

$$
\int_0^{2\pi} \sqrt{r^2 + (dr/d\theta)^2} \, d\theta = \int_0^{2\pi} \sqrt{(1 - \cos \theta)^2 + \sin^2 \theta} \, d\theta = \int_0^{2\pi} \sqrt{2 - 2\cos \theta} \, d\theta
$$

$$
= 2 \int_0^{2\pi} \sqrt{\frac{1 - \cos \theta}{2}} \, d\theta = 2 \int_0^{2\pi} \sqrt{\sin^2(\theta/2)} \, d\theta
$$

$$
= 2 \int_0^{2\pi} |\sin(\theta/2)| \, d\theta = 2 \int_0^{2\pi} \sin(\theta/2) \, d\theta = 8.
$$

(4) The area is $\frac{1}{2}$ 2 $\int^{2\pi}$ 0 $(1 - \cos \theta)^2 d\theta =$ 1 2 $\int^{2\pi}$ 0 $1 - 2\cos\theta + \cos^2\theta d\theta =$ 1 2 $(2\pi - 0 + \pi) = \frac{3\pi}{8}$ 2 .

(5) The substitution $u = 1 + \frac{9}{4}(x+2)$ leads to

length
$$
=
$$
 $\int_0^1 \sqrt{1 + \frac{9}{4}(x+2)} dx = \frac{8}{27} \left(\frac{11}{2} + \frac{9x}{4}\right)^{3/2} \Big|_0^1$.

(6) A sphere with radius R is obtained by rotating the semicircle $y =$ $\overline{R^2-x^2}, -R \leq$ $x \leq R$ about the x-axis. In this case,

$$
\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \left(\frac{-x}{\sqrt{R^2 - x^2}}\right)^2} = \sqrt{\frac{R^2}{R^2 - x^2}} = \frac{R}{\sqrt{R^2 - x^2}}.
$$

Area is $2\pi \int^R \sqrt{R^2 - x^2} \cdot \frac{R}{\sqrt{R^2 - x^2}} dx = 4\pi R^2$

The surface area is 2π \int_0^R $-R$ $\sqrt{R^2-x^2} \cdot \frac{R}{\sqrt{R^2}}$ $\frac{R}{R^2 - x^2} dx = 4\pi R^2.$

(7) Multiplying $r = \sin \theta$ by r, we get $r^2 = r \sin \theta$, which is $x^2 + y^2 = y$. This is $(x - 0)^2 +$ $(y-1/2)^2 = (1/2)^2$. The center of the circle is $(0, 1/2)$. The radius of the circle is 1/2.

(8) We can use
$$
x = \frac{6 \cos t}{3}
$$
, $y = \frac{6 \sin t}{4}$, $0 \le t \le 2\pi$.

(9) The length is \int_0^2 1 $\sqrt{4t^2+9t^4} dt = \int_0^2$ 1 $t\sqrt{4+9t^2}\,dt$. We can compute this integral using the substitution $u = 4 + 9t^2$.

 $(10)(a) \frac{dx}{dt} = \tan x$ leads to $\int \frac{\cos x \, dx}{\sin x}$ $\sin x$ $=\int 1 dt, \ln|\sin x| = t + C, |\sin x| = e^t e^C = Be^t,$ where $B = e^C$ is a constant. Now we get $\sin x = \pm Be^t = Ae^t$, where A is a constant. Substituting $t = 0$ and $x = \pi/6$, we get $1/2 = A$. The initial value problem is solved by $x = \sin^{-1}((1/2)e^t).$

(10)(b)
$$
(4+x^3)^{1/2} \frac{dy}{dx} = (xy)^2
$$
 leads to $\int \frac{dy}{y^2} = \int \frac{x^2}{(4+x^3)^{1/2}} dx, -\frac{1}{y} = \frac{2}{3}(4+x^3)^{1/2} + C.$

Substituting $x = 0$ and $y = -1$, we get $C = -\frac{1}{2}$ 3 . The initial value problem is solved by $\frac{3}{\sqrt{2}}$.

$$
y = \frac{1 - 2\sqrt{4 + x^3}}{1 - 2\sqrt{4 + x^3}}
$$

(11) The temperature T of the coffee is given by $T = 25 + Ce^{-kt}$. The initial condition $T(0) = 50$ implies $C = 25$. Now we know that the temperature T of the coffee is given by $T = 25 + 25e^{-kt}$. Substituting $t = 1$, we get $30 = 25 + 25e^{-k}$, which implies $k = \overline{\ln 5}$. The problem asks us to find t such that $40 = 25 + 25e^{-kt}$. This last equation gives $e^{-kt} = 3/5$, hence $-kt = \ln(3/5)$. We solve for t using $k = \ln 5$.

(12) We know $P(t) = \frac{20,000}{.05} + Ce^{(.05)t}$ and $P(30) = 0$. This gives us $C = -(400,000)e^{-3/2}$. The initial balance is $P(0) = 400,000 - (400,000)e^{-3/2}$.

(13) Since $f(x) = x^{-1}$, we get $f'(x) = -x^{-2}$, $f''(x) = 2x^{-3}$, $f'''(x) = -6x^{-4}$. This implies $f(1) = 1, f'(1) = -1, f''(1) = 2, f'''(1) = -6.$ Now we know

$$
T_3(x) = 1 + (-1)(x - 1) + \frac{2(x - 1)^2}{2} + \frac{-6(x - 1)^3}{6}
$$

= 1 - (x - 1) + (x - 1)² - (x - 1)³.

We know $|f^{(4)}(u)| = 24|u^{-5}| \le 24$ when $1 \le u \le 3/2$. This says that we can use $K = 24$. This implies

$$
|f(3/2) - T_3(3/2)| \le \frac{24|3/2 - 1|^4}{4!} = \frac{1}{16}.
$$

(14)(a) The inequalities $-1 \le \sin n \le 1$ lead to $-\frac{1}{n}$ n $\langle \frac{\sin n}{n} \rangle$ n $\langle \ \frac{1}{\cdot}$ $\frac{1}{n}$. Since $\lim_{n \to \infty} -\frac{1}{n}$ n $= 0 =$ $\lim_{n\to\infty}$ 1 $\frac{1}{n}$, the Squeeze Theorem implies $\lim_{n\to\infty}$ $\sin n$ \overline{n} $= 0.$

(14)(b) L'Hôpital's Rule gives $\lim_{x \to \infty} \ln ((3x)^{1/x}) = \lim_{x \to \infty}$ $ln(3x)$ $\frac{f(x)}{x} = \lim_{x \to \infty}$ $1/x$ 1 $= 0$. Exponentiating this, we get $\lim_{x \to \infty} (3x)^{1/x} = e^0 = 1$. This implies $\lim_{n \to \infty} (3n)^{1/n} = 1$.

 $(14)(c)$ L'Hôpital's Rule gives

$$
\lim_{x \to \infty} \ln\left(\left(1 - \frac{5}{x}\right)^x\right) = \lim_{x \to \infty} x \ln\left(1 - \frac{5}{x}\right) = \lim_{x \to \infty} \frac{\ln\left(1 - \frac{5}{x}\right)}{1/x} = \lim_{x \to \infty} \frac{\left(\frac{5/x^2}{1 - 5/x}\right)}{-1/x^2} = -5.
$$

Exponentiating this, we get $\lim_{x \to \infty} \left(1 - \frac{5}{x}\right)$ \overline{x} $\int_0^x = e^{-5}$. This implies $\lim_{n \to \infty} \left(1 - \frac{5}{n}\right)$ n $\bigg)^n = e^{-5}.$

 $(14)(d)$ Since $\lim_{x\to 0}$ $\sin x$ $\frac{n}{x} = 1$ and $\lim_{n \to \infty} 1/n = 0$, we conclude $\lim_{n \to \infty}$ $\sin(1/n)$ $\frac{1}{1/n} = 1$. This is equivalent to $\lim_{n \to \infty} n \sin(1/n) = 1$.

(14)(e) L'Hôpital's Rule gives $\lim_{x\to 0}$ $1 - \cos x$ $\frac{\cos x}{x^2} = \lim_{x \to 0}$ $\sin x$ $2x$ = 1 $\frac{1}{2}$. Since $\lim_{n\to\infty} 1/n = 0$, we conclude $\lim_{n\to\infty}$ $1 - \cos(1/n)$ $\frac{1}{(1/n)^2} =$ 1 $\frac{1}{2}$. This is equivalent to $\lim_{n \to \infty} n^2(1 - \cos(1/n)) = \frac{1}{2}$ 2 .

(15) Since $\left|\frac{1}{1000}\right|$ < 1, the formula for the sum of a geometric series gives

$$
5.273273273\ldots = 5 + \frac{273}{1000} + \frac{273}{(1000)^2} + \frac{273}{(1000)^3} + \cdots
$$

$$
= 5 + \frac{273}{1000} \left(1 + \frac{1}{1000} + \left(\frac{1}{1000} \right)^2 + \left(\frac{1}{1000} \right)^3 + \cdots \right)
$$

$$
= 5 + \frac{273}{1000} \left(\frac{1}{1 - \frac{1}{1000}} \right) = 5 + \frac{273}{999} = \frac{5268}{999} .
$$

 $(16)(a) \sum_{n=1}^{\infty}$ $n=3$ 2^n $\frac{2}{3^{n+1}} =$ 2 3 3 4 $\sqrt{ }$ 1 + 2 3 $+\left(\frac{2}{5}\right)$ 3 $\bigg)^2 + \bigg(\frac{2}{2}\bigg)$ 3 $\Big)^3 + \cdots \Big) =$ 2 3 $rac{2^3}{3^4} \cdot \frac{1}{1-z}$ $\frac{1}{1-2/3}$ = 8 27 .

 $(16)(b)$ N $n=4$ 1 $\frac{1}{n(n-1)} = \sum_{n=1}^{n}$ N $n=4$ $\begin{pmatrix} 1 \end{pmatrix}$ $\frac{n-1}{n}$ − 1 \overline{n} $=$ 1 3 -1 N because the other terms cancel out in pairs. Now

$$
\sum_{n=4}^{\infty} \frac{1}{n(n-1)} = \lim_{N \to \infty} \sum_{n=4}^{N} \frac{1}{n(n-1)} = \lim_{N \to \infty} \left(\frac{1}{3} - \frac{1}{N}\right) = \frac{1}{3}
$$

.

 $(17)(a)$ Since $\frac{1}{\sqrt{2}}$ \overline{n} is decreasing and approaches 0, the Leibniz Test tells us that $\sum_{n=1}^{\infty}$ $n=5$ $\frac{(-1)^{n-1}}{2}$ \overline{n} converges.

(17)(b)
$$
\int_5^\infty \frac{dx}{x(\ln x)} = \lim_{b \to \infty} \ln(\ln x) \Big|_5^b = \infty, \text{ hence } \sum_{n=5}^\infty \frac{1}{n(\ln n)} \text{ diverges by the Integral Test.}
$$

$$
(17)(c) \int_5^\infty \frac{dx}{x(\ln x)^{3/2}} = \lim_{b \to \infty} -2(\ln x)^{-1/2} \Big|_5^b = 2(\ln 5)^{-1/2} < \infty, \text{ hence } \sum_{n=5}^\infty \frac{1}{n(\ln n)^{3/2}}
$$
 converges by the Integral Test.

(17)(d) Since the answer to 14(c) is $\lim_{n\to\infty} \left(1-\frac{5}{n}\right)$ n $\Big)^n = e^{-5} \neq 0$, the Test For Divergence says that $\sum_{n=1}^{\infty}$ $n=4$ $\left(1-\frac{5}{5}\right)$ n $\bigg\}^n$ diverges.

(17)(e) We do a limit comparison with the series $\sum_{n=1}^{\infty}$ $n=4$ 1 n . The answer to $14(d)$ says $\lim_{n\to\infty}$ $\sin(1/n)$ $\frac{1}{1/n}$ = 1. Since this limit is positive and finite, we conclude divergence of \sum^{∞} $n=4$ $\sin(1/n)$ from the divergence of $\sum_{n=1}^{\infty}$ $n=4$ 1 n .

(17)(f) We do a limit comparison with the series $\sum_{n=1}^{\infty} \frac{1}{n}$ $n=4$ $n²$ The answer to $14(e)$ says $\lim_{n\to\infty}$ $1 - \cos(1/n)$ $\frac{\frac{\cos(1/n)}{n^2}}{1/n^2} =$ 1 2 . Since this limit is positive and finite, we conclude convergence of \sum^{∞} $n=4$ $(1 - \cos(1/n))$ from the convergence of $\sum_{n=1}^{\infty}$ $n=4$ 1 $\frac{1}{n^2}$. $(17)(g)$ Since $|2/3| < 1$, we know that $\sum_{n=1}^{\infty}$ $n=2$ 2^n $\frac{2^n}{3^n} = \sum_{n=0}^{\infty}$ $n=2$ $\sqrt{2}$ 3 $\Big)^n$ converges. The Comparison Test and $0 <$ 2^n $\frac{2}{3^n+1}$ < 2^n $rac{2^n}{3^n}$ allow us to conclude that $\sum_{n=2}^{\infty}$ $n=2$ 2^n $\frac{2}{3^n+1}$ converges. (17)(h) The Limit Comparison Test with $\sum_{n=1}^{\infty}$ $n=2$ 1 $\frac{1}{n^2}$ is successful because

$$
\lim_{n \to \infty} \frac{\frac{n^2}{n^4 - n^3 - 4}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^4}{n^4 - n^3 - 4} = 1,
$$

which is a positive and finite limit. Since the series $\sum_{n=1}^{\infty}$ $n=2$ 1 $\frac{1}{n^2}$ converges, we conclude that

the series $\sum_{n=1}^{\infty} \frac{n^2}{4}$ $n=2$ $\frac{n}{n^4 - n^3 - 4}$ converges.

(18)(a) If we take the sum of only the first 10 terms of $\sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{n^2}$, then the absolute value of

the error is at most \int_{0}^{∞} 10 dx $\frac{d\omega}{dx^2} =$ 1 10 .

(18)(b) If we take the sum of only the first 10 terms of $\sum_{n=1}^{\infty}$ $n=1$ $(-1)^n$ $\frac{1}{n^2}$, then the absolute value of the error is at most the absolute value of the first omitted term, which is $\frac{1}{11^2}$.

(19) An infinite series $\sum a_n$ converges absolutely when \sum \sum $|a_n|$ converges. An infinite series a_n converges conditionally when it converges, but does not converge absolutely. The \sum_{series}^n $n=1$ $(-1)^n$ n converges conditionally.

(20) Let L denote $\lim_{n\to\infty} a_n$. Taking the limit in the equation $a_{n+1} =$ Let L denote $\lim_{n \to \infty} a_n$. Taking the limit in the equation $a_{n+1} = \sqrt{12 + a_n}$, we get $L = \sqrt{12 + L}$. The number L must be a solution of the equation $L^2 = 12 + L$. This means that L must be either 4 or -3 . The equation $L = \sqrt{12 + L}$ excludes the possibility $L = -3$. We must have $L = 4$.