Primitive Roots modulo pⁿ

Prof. Weibel Math 356:01 (Fall 2009) Thursday, November 16, 2009

If $p \sim 10^{100}$ then the fraction of primitive roots mod p is $\phi(p-1)/(p-1)$, which is at least 1/2. So randomly picking 10 numbers under p, one is almost certain to be a primitive root modulo p. Unless you are Schrödinger ...

If r is a primitive root mod p, there are p numbers in \mathbb{Z}/p^2 which are $\equiv r \pmod{p}$. If we pick one at random, the odds that it is *not* a primitive root modulo p^2 are only 1 in p. So if $p \sim 10^{100}$ you can be pretty sure any lift you pick will work.

Theorem. Let p be an odd prime and r a primitive root mod p. Then all but one of the numbers r + ap (a = 0, 1, ..., p - 1) are primitive roots mod p^2 .

Example. 2 is a primitive root modulo 5, so 4/5 of $\{2, 7, 12, 17, 22\}$ are primitive roots modulo 25. In fact, 7 isn't a primitive root: $7^2 \equiv -1$ and $7^4 = 2401 \equiv 1 \pmod{25}$.

Proof. Write x = r + ap. Since $x^i \equiv r^i \pmod{p}$, the order of $x \mod p^2$ is divisible by the order of r modulo p, i.e., p-1. Since every y satisfies $y^{p(p-1)} \equiv 1 \pmod{p^2}$, x is a primitive root if and only if $x^{p-1} \not\equiv 1 \pmod{p^2}$. Now $r^{p-1} \equiv 1 \pmod{p}$, say $r^{p-1} = 1 + bp \pmod{p^2}$ for some b (which is unique modulo p). We compute:

$$x^{p-1} = r^{p-1} + (p-1)x^{p-2}(ap) + \binom{p-1}{2}x^{p-3}b^2p^2 + \dots + b^{p-1}p^{p-1}$$

and all but the first two terms are divisible by p^2 . Thus $x^{p-1} \equiv 1 + [b - ax^{p-2}]p$ (mod p^2). So $x^{p-1} \equiv 1$ exactly when $a = bx^{-(p-2)}$. There is just one choice of a (and hence of x = r + ap) for which this holds. \Box

Theorem. Let p be an odd prime. If r is a primitive root modulo p^2 then r is a primitive root modulo p^n for all $n \ge 2$.

Proof. We show by induction on n that r is a primitive root modulo p^n , the base case n = 2 being the hypothesis. So assume that r is a primitive root modulo p^{n-1} . Set $e = \phi(p^{n-1}) = p^{n-2}(p-1)$, and note that $e/p = \phi(p^{n-2})$, $pe = \phi(p^n)$.

Since $r^i \not\equiv 1 \pmod{p^{n-1}}$ unless *e* divides *i*, the order of *r* is divisible by *e*. Since $y^{pe} \equiv 1 \pmod{p^n}$ by Euler's Theorem, the order of *r* divides *pe*. Thus *r* is a primitive root modulo p^n if and only if $r^e \not\equiv 1 \pmod{p^n}$.

The inductive hypothesis that r is a primitive root modulo p^{n-1} is equivalent to $r^{e/p} \not\equiv 1 \pmod{p^{n-1}}$. On the other hand, since $e/p = \phi(p^{n-2})$ we know that $r^{e/p} \equiv 1 \pmod{p^{n-2}}$. Thus we can write $r^{e/p} = 1 + ap^{n-2}$ for some $a \not\equiv 0 \pmod{p}$. We may now compute:

$$r^{e} = (r^{e/p})^{p} = (1 + ap^{n-2})^{p} = 1 + ap^{n-1} + \binom{p}{2}a^{2}p^{2(n-1)} + \dots \equiv 1 + ap^{n-1}$$

Thus $r^e \not\equiv 1 \mod p^n$, and r is a primitive root mod p^n . But induction, r is a primitive root modulo p^n for all $n \geq 2$. \Box