Mathematics 373 Workshop 7 Solutions Summation Fall 2003

Introduction. In this workshop, the Euler-Maclaurin summation formula will be derived. We have seen that formulas can be derived for a standard interval which is then rescaled to apply to other intervals. We follow D. E. Knuth, "The Art of Computer Programming, Volume 1, Fundamental Algorithms", Addison-Wesley, 1968, section 1.2.11.2.

Problem 1. We seek to compare

$$
\sum_{k=1}^{n-1} f(k) \quad \text{and} \quad \int_1^n f(x) \, dx.
$$

1a Statement. On the interval $k \leq x \leq k+1$, use the formula

$$
\frac{d}{dx}((x-k-0.5)f(x)) = f(x) + (x - k - 0.5)f'(x)
$$

to obtain

$$
\frac{1}{2}f(1) + \sum_{k=2}^{n-1} f(k) + \frac{1}{2}f(n) = \int_1^n f(x) \, dx + \int_1^n S_1(x) f'(x) \, dx,
$$

where $S_1(x)$ is the "sawtooth function" that is given by $S_1(x) = x - k - 0.5$ when $k \le x \le k + 1$. (Its values at the integers are irrelevant, since it is only going to be integrated.)

1a Solution. For each *k* with $1 \leq k \leq n-1$,

$$
\int_{k}^{k+1} \frac{d}{dx} \Big((x - k - 0.5) f(x) \Big) dx = \left[(x - k - 0.5) f(x) \right]_{k}^{k+1}
$$

$$
= \left(0.5 f(k+1) \right) - \left(-0.5 f(k) \right)
$$

$$
= 0.5 \left(f(k+1) + f(k) \right)
$$

and

$$
\int_{k}^{k+1} f(x) + (x - k - 0.5) f'(x) dx = \int_{k}^{k+1} f(x) dx + \int_{k}^{k+1} S_1(x) f'(x) dx
$$

Adding these causes $f(1)$ and $f(n)$ to retain their coefficients of 0.5 while the remaining $f(k)$ have two coefficients of 0.5 that combine to give a coefficient of 1. The sum of integrals of a single function over intervals that partition a big interval is just the integral over the big interval.

A close examination of this argument shows that it requires $n \geq 3$ for the sum of $f(k)$ to contain any terms. It is customary to extend this to $n = 2$ by claiming that a sum from 2 to 1 is an **empty sum** that has the value zero. One must be careful with this argument, since it is a useful convention only when summing over a set that has an **efficient** description as an empty set. That is, given numbers a_k defined for $k > 0$, the numbers A_n for $n \geq 0$ given by

$$
A_n = \sum_{k=1}^n a_k
$$

satisfy the **inductive definition**

$$
A_0 = 0;
$$
 and $A_k = A_{k-1} + a_k$ for $k > 0$.

This inductive definition leads to rigorous proofs of statements about sums that do not require visualizing expressions with **arbitrarily many** terms. If a_k is defined for **all** integers, this inductive definition also gives a value to the sum when *n* is negative, but this value does not agree with the usual interpretation of summation notation.

1b Statement. Continue this process by finding a function $S_2(x)$ such that S_2' $S_2(x) = S_1(x)$. Note that

$$
\int_{k}^{k+1} S_1(x) dx = 0
$$

for all *k* so that $S_2(x)$ can be chosen to be continuous (although it will fail to be differentiable at integer values of *x*). Also, $S_2(x + 1) = S_2(x)$.

1b Solution. On the interval
$$
[k, k + 1]
$$
, $S_1(x) = x - k - 0.5$, so, for $k \le x \le k + 1$,

$$
\int_k^x S_1(u) du = \int_k^x u - k - 0.5 du = 0.5(x - k)^2 - 0.5(x - k)
$$

since this is a function whose derivative is $S_1(x)$ and whose value at $x = k$ is zero. The value of this function at $x = k + 1$ is also zero.

Any functions with derivative $S_1(x)$ must differ from this by a constant on $[k, k + 1]$, so it will have the same value at $x = k + 1$ as it has at $x = k$. The value of the integral at $x = k + 1$ obtained from the interval $[k, k + 1]$ is used to determine the constant term on the interval $[k + 1, k + 2]$. As long as the function is expressed in terms of powers of the **fractional part** of x , the constant terms will be the same on each interval.

Alternatively, one could write $S_2(x) = 0.5(S_1(x))^2 + C$. Since $S_1(x + 1) = S_1(x)$, the same is true for S_2 . The graph of $S_2(x)$ consists of upward facing parabolic arcs with minima at the values $k + 0.5$ for all integers *k*.

Once $S_2(x)$ is written as a function of $S_1(x)$, or the **fractional part** of *x* (which is $x - k$ for $k \le x < k+1$), the periodicity is assured once continuity at integers is established.

1c Statement. The function $S_2(x)$ is only determined up to an additive constant. In order to be able to continue, this constant should be chosen so that

$$
\int_{k}^{k+1} S_2(x) dx = 0
$$

for all *k*. Find a choice of $S_2(x)$ with this property. Then

$$
\frac{d}{dx}\big(S_2(x)f'(x)\big) = S_1(x)f'(x) + S_2(x)f''(x),
$$

so $\int_1^n S_1(x) f'(x) dx$ can be expressed as the sum of a constant multiple of $(f'(n) - f'(1))$ and the negative of the integral of $S_2(x) f''(x)$.

1c Solution. Let's use $S_2(x) = 0.5(S_1(x))^2 + C$. If we write $x = k + 0.5 + u$ when $k \le x \le k + 1$, **1c Solution.** Let's then $-0.5 \le u \le 0.5$ and

$$
\int_{k}^{k+1} S_2(x) dx = \int_{-0.5}^{0.5} \frac{1}{2} u^2 + C du = \left[\frac{1}{6} u^3 + C u \right]_{-0.5}^{0.5} = \frac{1}{24} + C.
$$

In this form $C = -1/24$. It is customary to express the quantities arising in this process as polynomials in *x* − *k*, so if we write $v = x - k = u + 0.5$, then $u = v - 0.5$ and

$$
\frac{1}{2}u^2 - \frac{1}{24} = \frac{1}{2}\left(v - \frac{1}{2}\right)^2 - \frac{1}{24}
$$

$$
= \frac{1}{2}v^2 - \frac{1}{2}v + \frac{1}{8} - \frac{1}{24}
$$

$$
= \frac{1}{2}v^2 - \frac{1}{2}v + \frac{1}{12}
$$

$$
= \frac{1}{2}\left(v^2 - v + \frac{1}{6}\right)
$$

In particular, $S_2(k) = 1/12$ for all integers k and $S_2(x)$ is a continuous function. The integration formula mentioned in the statement is then

$$
\int_1^n S_1(x) f'(x) dx + \int_1^n S_2(x) f''(x) dx = [S_2(x) f'(x)]_1^n = \frac{1}{12} (f'(n) - f'(1))
$$

or

$$
\int_1^n S_1(x) f'(x) dx = \frac{1}{12} (f'(n) - f'(1)) - \int_1^n S_2(x) f''(x) dx
$$

This is the traditional way of writing the result of **integration by parts**, which is the integral calculus equivalent of the **product rule** of differential calculus.

Comment. This process can be continued indefinitely to get an asymptotic series for the difference between an integral and its approximation by the **composite trapezoidal rule**.

Problem 2 begins on next page

Problem 2. Here, we will demonstrate that a particular formula satisfies the conditions that characterize the process of Problem 1. Consider the function and its Taylor series

$$
\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} \frac{B_k x^k}{k!}.
$$

This will be taken as the **definition** of the numbers B_k .

2a Statement. Show that

$$
B(x) = \frac{x}{2} + \frac{x}{e^x - 1}
$$

is an **even function**, so that $B_1 = -1/2$ and $B_{2k+1} = 0$ for $k > 0$. (We have introduced a name not present originally to use in the solution.)

2a Solution. We need to show that $B(-x) = B(x)$, so we first form $B(-x)$ and simplify its description to allow it to be compared to $B(x)$.

$$
B(-x) = \frac{-x}{2} + \frac{-x}{e^{-x} - 1}
$$

= $-\frac{x}{2} - \frac{xe^{x}}{1 - e^{x}}$
= $-\frac{x}{2} + \frac{xe^{x}}{e^{x} - 1}$
= $-\frac{x}{2} + x \left(1 + \frac{1}{e^{x} - 1}\right)$
= $-\frac{x}{2} + x + \frac{x}{e^{x} - 1}$
= $\frac{x}{2} + \frac{x}{e^{x} - 1}$
= $B(x)$

 e^{x} $\frac{x}{x}$ $\frac{x}{e^x - 1} = x \frac{e^x}{e^x - 1}$ $\frac{e^x}{e^x - 1} = x \left(1 + \frac{1}{e^x - 1} \right)$ $e^{x} - 1$ \setminus

to show that

2b Statement. Use

$$
\sum_{k} \binom{m}{k} B_k = B_m
$$

for $m \neq 1$. What is the corresponding formula when $m = 1$? (The index of this equation was written as *n* in the statement, but *n* is reserved for the upper limit of the original integral, so it has been changed to *m* here.) **2b Solution.** Multiplying the Taylor series for e^x and $x/(e^x - 1)$ gives

$$
\sum_{j} \frac{x^j}{j!} \cdot \sum_{k} \frac{B_k x^k}{k!} = \sum_{j,k} \frac{B_k x^{j+k}}{j!k!}
$$

where *j* and *k* take all positive integer values. If we introduce a new variable $m = j + k$, the terms of the sum can be described using *m* and *k* with $j = m - k$. The condition that $j \ge 0$ requires that $0 \le k \le m$, so we should sum over **just these** *k* before summing over all $m \ge 0$. The denominator $j!k! = k!(m-k)!$ suggests the denominator in the **binomial coefficient** *m*-choose-*k*, one notation for which appears in statement. This binomial coefficient is **defined to be** zero unless $0 \le k \le m$, so the range of summation need not be written. The series for $xe^x/(e^x - 1)$ is

$$
\sum_{m}\left(\sum_{k}{m \choose k}B_{k}\right)\frac{x^{m}}{m!}.
$$

We were given that this is $x + x/(e^x - 1)$, so the coefficient of $x^m/m!$ in these two series are the same. For $m \neq 1$, this is the desired result. For $m = 1$, this is

$$
\sum_{k} \binom{m}{k} B_k = B_m + 1.
$$

Expanding the sum, we get $B_0 + B_1 + 1$, which reduces to $B_0 = 1$. Note also that the case $m = 0$ expands to $B_0 = B_0$. In general, the sum on the left is B_m plus the sum of terms with $k < m$, so this can be solved for B_{m-1} in terms of the B_k with smaller index.

2c Statement. Let

$$
B_m(x) = \sum_{k} \binom{m}{k} B_k x^{m-k}.
$$

(The domain of the sum is $0 \le k \le m$, but it need not be shown because the binomial coefficient is zero outside that interval.) Show that $B'_m(x) = m B_{m-1}(x)$.

2c Solution. The definition of $B_m(x)$ leads to

$$
B'_m(x) = \sum (m-k) {m \choose k} B_k x^{m-k-1}
$$

However,

$$
(m-k){m \choose k} = \frac{(m-k)(m!)}{k!(m-k)!} = \frac{(m!)}{k!(m-k-1)!} = m \frac{(m-1)!}{k!(m-k-1)!} = m {m-1 \choose k}
$$

This is the coefficient of x^{m-k-1} in $m B_{m-1}(x)$, as required.

Comment. This can be used to show that $S_m(x) = B_m(x - k)/m!$ for $k \le x < k + 1$. In particular, part (c) shows that $S'_m(x) = S_{m-1}(x)$ and part (b) shows that $S_m(1) = S_m(0)$ for $m \neq 1$ for this definition. These are the two **defining properties** of $S_m(x)$ developed in problem 1.

End of workshop 7