Mathematics 373 Workshop 7 Solutions
Summation

Fall 2003

Introduction. In this workshop, the Euler-Maclaurin summation formula will be derived. We
have seen that formulas can be derived for a standard interval which is then rescaled to apply to other intervals.
We follow D. E. Knuth, “The Art of Computer Programming, Volume 1, Fundamental Algorithms”, Addison-
Wesley, 1968, section 1.2.11.2.
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la Statement. On the intervak < x < k + 1, use the formula

%((x—k—O.S)f(x)) =f(x)+x—-k—-0.5"f'(x)

to obtain
n-1

%fm+§:um+%um=/’umm+/jamwumK
k=2 1 1

where S (X) is the “sawtooth function” that is given b$i(x) = x — k — 0.5 whenk < x < k+ 1. (Its
values at the integers are irrelevant, since it is only going to be integrated.)

1a Solution. Foreactkk withl <k <n-—1,

k+1 d
/ &((x —k—05f(x))dx=[(x —k—05)f ]kt
k

= (05f(k+1))—(-05f(k))
=05(fkk+1+ f(k)
and

k+1 k+1 k+1
f f(x)+(x—k—0.5)f/(x)dx:/ f(x)dx+ Si(x) f/(x) dx
k k k

Adding these causet(1) and f (n) to retain their coefficients of.B while the remainingf (k) havetwo
coefficients of (6 that combine to give a coefficient of 1. The sum of integrals of a single function over
intervals that partition a big interval is just the integral over the big interval.

A close examination of this argument shows that it requires 3 for the sum off (k) to contain any
terms. Itis customary to extend thisto= 2 by claiming that a sum from 2 to 1 is @ampty sumthat has
the value zero. One must be careful with this argument, since it is a useful convention only when summing
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over a set that has arificient description as an empty set. That is, given numbgidefined fork > 0, the
numbersA, for n > 0 given by
n
An = Z ak
k=1

satisfy theinductive definition
Ap=0; and Ax= Ax_1-+afork > 0.

This inductive definition leads to rigorous proofs of statements about sums that do not require visualizing
expressions witkarbitrarily many terms. Ifag is defined forall integers, this inductive definition also
gives a value to the sum whenis negative, but this value does not agree with the usual interpretation of
summation notation.

1b Statement. Continue this process by finding a functi@(x) such thatS,(x) = Si(x). Note

that
k+1

S(x)dx=0

for all k so thatS$(x) can be chosen to be continuous (although it will fail to be differentiable at integer
values ofx). Also, S (X + 1) = S(X).

1b Solution. On the intervalk, k + 1], Si(x) = x —k — 0.5, so, fork < x <k + 1,

X X
/ Sl(u)du:/ uU—k—05du=05(x — k)2 —0.5x — k)
K K

since this is a function whose derivative3g x) and whose value at = k is zero. The value of this function
atx = k+ 1 is also zero.

Any functions with derivativeS; (x) must differ from this by a constant 4k, k + 1], so it will have
the same value at = k + 1 as it has ak = k. The value of the integral at = k + 1 obtained from
the interval[k, k + 1] is used to determine the constant term on the intdikval 1, k + 2]. As long as the
function is expressed in terms of powers of frectional part of x, the constant terms will be the same on
each interval.

Alternatively, one could writeS(x) = 0.5( Sy(x) )2 + C. SinceSi(x + 1) = Si(x), the same is true
for S. The graph of$(x) consists of upward facing parabolic arcs with minima at the vatue<.5 for
all integersk.

OnceS(x) iswritten as afunction o (x), or thefractional part of x (whichisx—kfork < x < k+1),
the periodicity is assured once continuity at integers is established.

1c Statement. The functionS(x) is only determined up to an additive constant. In order to be able
to continue, this constant should be chosen so that

k41
SX)dx=0

for all k. Find a choice o5 (x) with this property. Then
d
&( S () =S f'(x) + S(x) £ (%),

sofln S1(x) f/(x) dx can be expressed as the sum of a constant multip(leﬁ ah) — /(1) ) and the negative
of the integral ofS$(x) f”(x).
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1c Solution. Let's useS(x) = 0.5( Sy(x) )2+C. If we write x = k+0.5+uwhenk < x < k+1,
then—0.5 <u < 0.5 and

0.5

k+1 0.5 1 5 1 3 1
X)dx = -u“+Cdu=|=u>+Cu =—+C.
200 /—0.5 7 [6 " }—0.5 24"
In this formC = —1/24. It is customary to express the quantities arising in this process as polynomials in
x — Kk, so if we writev = X — k = u + 0.5, thenu = v — 0.5 and
1, 1 1 1\? 1
20 24 2\""2) "2
1, 1 1 1
—2" 7278 2
1, 1 1
—2" 72" T2

In particular,$ (k) = 1/12 for all integerk and $(x) is a continuous function. The integration formula
mentioned in the statement is then

n n 1
| si0t00dx+ [ 800 £00dx= [$00 F00]] = 75( 1) = 1'D)
or
n 1 n
/ Sl(x)f/(x)dX=E(f,(n)— f’(l))—/ S(x) f7(x) dx
1 1

This is the traditional way of writing the result aftegration by parts, which is the integral calculus
equivalent of thesroduct rule of differential calculus.

Comment. This process can be continued indefinitely to get an asymptotic series for the difference
between an integral and its approximation by thenposite trapezoidal rule

Problem 2 begins on next page
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Problem 2. Here, we will demonstrate that a particular formula satisfies the conditions that
characterize the process of Problem 1. Consider the function and its Taylor series

X i By xK
e -1 = k!
This will be taken as thdefinition of the number®.
2a Statement. Show that

Boo = X 4
2 -1

is aneven function, so thatB; = —1/2 andBy+1 = 0 fork > 0. (We have introduced a name not present
originally to use in the solution.)

2a Solution. We need to show thaB(—x) = B(x), so we first formB(—x) and simplify its
description to allow it to be compared B(X).

B(=0) = TX + e—X)il
X xel
T2 1-¢
X xet
T2 e o1
= —§+X(l+ m)
X X
-T2 e
X X
2T e
= B(X)

2b Statement. Use

to show that

SO

k

for m £ 1. What s the corresponding formula whan= 1? (The index of this equation was writtenrai
the statement, buitis reserved for the upper limit of the original integral, so it has been changedhéoe.)
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2b Solution. Multiplying the Taylor series foeX andx/(e* — 1) gives

X1 By xK By x1 Tk
ZF'Z k! = jTk!
j

k : ik

wherej andk take all positive integer values. If we introduce a new variable j +Kk, the terms of the sum
can be described usimg andk with j = m — k. The condition thaj > 0 requires that Gz k < m, so we
should sum ovejust thesek before summing over ath > 0. The denominatoy!k! = k!(m — k)! suggests
the denominator in theinomial coefficientm-choosek, one notation for which appears in statement. This
binomial coefficient islefined to bezero unless G&< k < m, so the range of summation need not be written.

The series foxe/(e* — 1) is
m xm
(@)

We were given that this is + x/( e — 1), so the coefficient of™/m! in these two series are the same. For
m # 1, this is the desired result. For= 1, this is

m
Z( )Bk:Bm+1.
—~ \k

Expanding the sum, we g& + B; + 1, which reduces t@®y = 1. Note also that the case = 0 expands
to Bp = Bg. In general, the sum on the left By, plus the sum of terms witk < m, so this can be solved
for Bm—1 in terms of theBy with smaller index.

2C Statement. Let

Bm(X) = Z (r:) Bix™ K.

k

(The domain of the sum is & k < m, but it need not be shown because the binomial coefficient is zero
outside that interval.) Show th&, (x) = mBn_1(x).

2¢ Solution. The definition ofBy(X) leads to

Br(¥) = > _(Mm—k) (':) Bixmk-1

However,

m _(m—k)(m!)_ (mh) _ (m—1)! _ m-—1
(m_k)(k>_ kKim—1k)!  ki(m—k—1)! _mk!(m—k—l)!_m< k )

This is the coefficient ok™ k1 in mBy_1(x), as required.

Comment. This can be used to show thgh(x) = Bn(X — K)/m! for k < x < k + 1. In particular,
part (c) shows tha§,,(X) = Sn—1(x) and part (b) shows th&,(1) = Sn(0) for m # 1 for this definition.
These are the twdefining properties of Sy(x) developed in problem 1.

End of workshop 7
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