
Mathematics 373 Workshop 7 Solutions

Summation

Fall 2003

Introduction. In this workshop, the Euler-Maclaurin summation formula will be derived. We
have seen that formulas can be derived for a standard interval which is then rescaled to apply to other intervals.
We follow D. E. Knuth, “The Art of Computer Programming, Volume 1, Fundamental Algorithms”, Addison-
Wesley, 1968, section 1.2.11.2.

Problem 1. We seek to compare

n−1∑
k=1

f (k) and
∫ n

1
f (x) dx.

1a Statement. On the intervalk ≤ x ≤ k + 1, use the formula

d

dx

(
(x − k − 0.5) f (x)

)
= f (x) + (x − k − 0.5) f ′(x)

to obtain

1

2
f (1) +

n−1∑
k=2

f (k) +
1

2
f (n) =

∫ n

1
f (x) dx +

∫ n

1
S1(x) f ′(x) dx,

whereS1(x) is the “sawtooth function” that is given byS1(x) = x − k − 0.5 whenk ≤ x ≤ k + 1. (Its
values at the integers are irrelevant, since it is only going to be integrated.)

1a Solution. For eachk with 1 ≤ k ≤ n − 1,∫ k+1

k

d

dx

(
(x − k − 0.5) f (x)

)
dx = [(x − k − 0.5) f (x)]k+1

k

=
(

0.5 f (k + 1)
)
−
(
−0.5 f (k)

)
= 0.5

(
f (k + 1) + f (k)

)
and ∫ k+1

k
f (x) + (x − k − 0.5) f ′(x) dx =

∫ k+1

k
f (x) dx +

∫ k+1

k
S1(x) f ′(x) dx

Adding these causesf (1) and f (n) to retain their coefficients of 0.5 while the remainingf (k) havetwo
coefficients of 0.5 that combine to give a coefficient of 1. The sum of integrals of a single function over
intervals that partition a big interval is just the integral over the big interval.

A close examination of this argument shows that it requiresn ≥ 3 for the sum off (k) to contain any
terms. It is customary to extend this ton = 2 by claiming that a sum from 2 to 1 is anempty sum that has
the value zero. One must be careful with this argument, since it is a useful convention only when summing
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over a set that has anefficient description as an empty set. That is, given numbersak defined fork > 0, the
numbersAn for n ≥ 0 given by

An =

n∑
k=1

ak

satisfy theinductive definition

A0 = 0; and Ak = Ak−1 + ak for k > 0.

This inductive definition leads to rigorous proofs of statements about sums that do not require visualizing
expressions witharbitrarily many terms. If ak is defined forall integers, this inductive definition also
gives a value to the sum whenn is negative, but this value does not agree with the usual interpretation of
summation notation.

1b Statement. Continue this process by finding a functionS2(x) such thatS′

2(x) = S1(x). Note
that ∫ k+1

k
S1(x) dx = 0

for all k so thatS2(x) can be chosen to be continuous (although it will fail to be differentiable at integer
values ofx). Also, S2(x + 1) = S2(x).

1b Solution. On the interval[k, k + 1], S1(x) = x − k − 0.5, so, fork ≤ x ≤ k + 1,∫ x

k
S1(u) du =

∫ x

k
u − k − 0.5du = 0.5(x − k)2

− 0.5(x − k)

since this is a function whose derivative isS1(x) and whose value atx = k is zero. The value of this function
at x = k + 1 is also zero.

Any functions with derivativeS1(x) must differ from this by a constant on[k, k + 1], so it will have
the same value atx = k + 1 as it has atx = k. The value of the integral atx = k + 1 obtained from
the interval[k, k + 1] is used to determine the constant term on the interval[k + 1, k + 2]. As long as the
function is expressed in terms of powers of thefractional part of x, the constant terms will be the same on
each interval.

Alternatively, one could writeS2(x) = 0.5
(

S1(x)
)2

+ C. SinceS1(x + 1) = S1(x), the same is true
for S2. The graph ofS2(x) consists of upward facing parabolic arcs with minima at the valuesk + 0.5 for
all integersk.

OnceS2(x) is written as a function ofS1(x), or thefractional part of x (which isx−k for k ≤ x < k+1),
the periodicity is assured once continuity at integers is established.

1c Statement. The functionS2(x) is only determined up to an additive constant. In order to be able
to continue, this constant should be chosen so that∫ k+1

k
S2(x) dx = 0

for all k. Find a choice ofS2(x) with this property. Then

d

dx

(
S2(x) f ′(x)

)
= S1(x) f ′(x) + S2(x) f ′′(x),

so
∫ n

1 S1(x) f ′(x) dx can be expressed as the sum of a constant multiple of
(

f ′(n) − f ′(1)
)

and the negative
of the integral ofS2(x) f ′′(x).
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1c Solution. Let’s useS2(x) = 0.5
(

S1(x)
)2

+C. If we write x = k+0.5+u whenk ≤ x ≤ k+1,
then−0.5 ≤ u ≤ 0.5 and∫ k+1

k
S2(x) dx =

∫ 0.5

−0.5

1

2
u2

+ C du =

[
1

6
u3

+ Cu

]0.5

−0.5
=

1

24
+ C.

In this formC = −1/24. It is customary to express the quantities arising in this process as polynomials in
x − k, so if we writev = x − k = u + 0.5, thenu = v − 0.5 and

1

2
u2

−
1

24
=

1

2

(
v −

1

2

)2

−
1

24

=
1

2
v2

−
1

2
v +

1

8
−

1

24

=
1

2
v2

−
1

2
v +

1

12

=
1

2

(
v2

− v +
1

6

)
In particular,S2(k) = 1/12 for all integersk andS2(x) is a continuous function. The integration formula
mentioned in the statement is then∫ n

1
S1(x) f ′(x) dx +

∫ n

1
S2(x) f ′′(x) dx =

[
S2(x) f ′(x)

]n
1 =

1

12

(
f ′(n) − f ′(1)

)
or ∫ n

1
S1(x) f ′(x) dx =

1

12

(
f ′(n) − f ′(1)

)
−

∫ n

1
S2(x) f ′′(x) dx

This is the traditional way of writing the result ofintegration by parts, which is the integral calculus
equivalent of theproduct rule of differential calculus.

Comment. This process can be continued indefinitely to get an asymptotic series for the difference
between an integral and its approximation by thecomposite trapezoidal rule.

Problem 2 begins on next page
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Problem 2. Here, we will demonstrate that a particular formula satisfies the conditions that
characterize the process of Problem 1. Consider the function and its Taylor series

x

ex − 1
=

∞∑
k=0

Bkxk

k!
.

This will be taken as thedefinition of the numbersBk.

2a Statement. Show that

B(x) =
x

2
+

x

ex − 1

is aneven function, so thatB1 = −1/2 andB2k+1 = 0 for k > 0. (We have introduced a name not present
originally to use in the solution.)

2a Solution. We need to show thatB(−x) = B(x), so we first formB(−x) and simplify its
description to allow it to be compared toB(x).

B(−x) =
−x

2
+

−x

e−x − 1

= −
x

2
−

xex

1 − ex

= −
x

2
+

xex

ex − 1

= −
x

2
+ x

(
1 +

1

ex − 1

)
= −

x

2
+ x +

x

ex − 1

=
x

2
+

x

ex − 1

= B(x)

2b Statement. Use

ex x

ex − 1
= x

ex

ex − 1
= x

(
1 +

1

ex − 1

)
to show that ∑

k

(
m

k

)
Bk = Bm

for m 6= 1. What is the corresponding formula whenm = 1? (The index of this equation was written asn in
the statement, butn is reserved for the upper limit of the original integral, so it has been changed tom here.)
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2b Solution. Multiplying the Taylor series forex andx/
(

ex
− 1

)
gives

∑
j

x j

j !
·

∑
k

Bkxk

k!
=

∑
j,k

Bkx j +k

j !k!

where j andk take all positive integer values. If we introduce a new variablem = j +k, the terms of the sum
can be described usingm andk with j = m − k. The condition thatj ≥ 0 requires that 0≤ k ≤ m, so we
should sum overjust thesek before summing over allm ≥ 0. The denominatorj !k! = k!(m− k)! suggests
the denominator in thebinomial coefficientm-choose-k, one notation for which appears in statement. This
binomial coefficient isdefined to bezero unless 0≤ k ≤ m, so the range of summation need not be written.
The series forxex/

(
ex

− 1
)

is ∑
m

(∑
k

(
m

k

)
Bk

)
xm

m!
.

We were given that this isx + x/
(

ex
− 1

)
, so the coefficient ofxm/m! in these two series are the same. For

m 6= 1, this is the desired result. Form = 1, this is

∑
k

(
m

k

)
Bk = Bm + 1.

Expanding the sum, we getB0 + B1 + 1, which reduces toB0 = 1. Note also that the casem = 0 expands
to B0 = B0. In general, the sum on the left isBm plus the sum of terms withk < m, so this can be solved
for Bm−1 in terms of theBk with smaller index.

2c Statement. Let

Bm(x) =

∑
k

(
m

k

)
Bkxm−k.

(The domain of the sum is 0≤ k ≤ m, but it need not be shown because the binomial coefficient is zero
outside that interval.) Show thatB′

m(x) = mBm−1(x).

2c Solution. The definition ofBm(x) leads to

B′
m(x) =

∑
(m − k)

(
m

k

)
Bkxm−k−1

However,

(m − k)

(
m

k

)
=

(m − k)(m!)

k!(m − k)!
=

(m!)

k!(m − k − 1)!
= m

(m − 1)!

k!(m − k − 1)!
= m

(
m − 1

k

)
This is the coefficient ofxm−k−1 in mBm−1(x), as required.

Comment. This can be used to show thatSm(x) = Bm(x − k)/m! for k ≤ x < k + 1. In particular,
part (c) shows thatS′

m(x) = Sm−1(x) and part (b) shows thatSm(1) = Sm(0) for m 6= 1 for this definition.
These are the twodefining propertiesof Sm(x) developed in problem 1.

End of workshop 7
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