Mathematics 373 Workshop 8 Solutions Taylor methods

Fall 2003

Problem 1. Consider the initial value problem

$$
\frac{dy}{dt} = 2t - \frac{5t^2}{y} \qquad y(0) = 1.
$$
 (1)

The existence and uniqueness theorems break down when $y = 0$, so we will confine attention to the **window**

$$
-2 \le t \le 2 \qquad 0 < y \le 5.
$$

The solutions computed here remain inside this window, but an extended computation would be stopped when it left the window — through **any** edge.

1a Statement. Verify that

$$
\frac{d^2y}{dt^2} = -\frac{-2y^3 + 10ty^2 - 10t^3y + 25t^4}{y^3}
$$

(This result was found using Maple).

1a Solution. Differentiating without simplification gives

$$
\frac{d^2y}{dt^2} = 2 - \frac{10t}{y} + \frac{5t^2\frac{dt}{dt}}{y^2}
$$

Then, substituting the given expression for *dy*/*dt* gives

$$
\frac{d^2y}{dt^2} = 2 - \frac{10t}{y} + \frac{5t^2\left(2t - \frac{5t^2}{y}\right)}{y^2}.
$$

 \mathcal{L}

To clear fractions, multiply by y^3 to get

$$
y^{3} \frac{d^{2} y}{dt^{2}} = 2y^{3} - 10ty^{2} + 5t^{2} (2ty - 5t^{2})
$$

= $2y^{3} - 10ty^{2} + 10t^{3}y - 25t^{4}$

This is equivalent to the given expression,

1b Statement. Use the information about dy/dt and d^2y/dt^2 from the equation and part (a) to show that every solution of the equation has a relative minimum point on the line $t = 0$ and a relative maximum point on the line $2y = 5t$.

1b Solution. The equation tells us that

$$
\frac{dy}{dt} = 2t - \frac{5t^2}{y} = \frac{2ty - 5t^2}{y} = \frac{t(2y - 5t)}{y}
$$

This is zero where $t = 0$ and where $2y = 5t$, so these lines pass through the **critical points** of the solutions $y(t)$. To determine whether the critical points are **relative minima** or **relative maxima**, use the **second derivative test**. If $t = 0$,

$$
y^3 \frac{d^2 y}{dt^2} = 2y^3,
$$

so $d^2y/dt^2 = 2 > 0$, indicating a minimum. If $2y = 5t$,

$$
\frac{d^2y}{dt^2} = 2 - 10\frac{t}{y} + 10t\left(\frac{t}{y}\right)^2 - 25t\left(\frac{t}{y}\right)^3
$$

$$
= 2 - 10\frac{2}{5} + 10t\left(\frac{2}{5}\right)^2 - 25t\left(\frac{2}{5}\right)^3
$$

$$
= 2 - 4 + \frac{8t}{5} - \frac{8t}{5} = -2
$$

Here is a picture of the slope field for this equation in the given window.

The results calculated here are quite visible. Also note that the slope is vertical on the *t* axis.

1c Statement. Use five steps of a second order Taylor method starting from $(0, 1)$ with $h = 0.1$ to approximate the solution of the initial value problem (1). To check these values, use four steps of the same method starting from $(0, 1)$ with $h = 0.05$ and compare results.

1c Solution. Here are the values found by Maple.

So far, the difference between the values of $y(t)$ is only about 0.0025. This is consistent with what would be expected from a second order method with $h = 0.1$ over an interval of length 0.2.

Problem 2. Using the corresponding fourth order method on (1) with $h = -0.01$ gives the

following values:

0. 1. −0.01 1.000101667 −0.02 1.000413330 −0.03 1.000944975 −0.04 1.001706559 −0.05 1.002708001 −0.06 1.003959161 −0.07 1.005469831 −0.08 1.007249713 −0.09 1.009308405 −0.10 1.011655379

2a Statement. Use the differential equation (1) to find the value of dy/dt at these points.

2a Solution. Here is the previous table augmented with a third column giving *dy*/*dt*.

2b Statement. Use the values of *y* and dy/dt at $t = -0.04$ and $t = -0.07$ to construct a **Hermite cubic** $H(t)$ interpolating these values. Also find the polynomial $H'(t)$.

2b Solution. The easiest formula for the Hermite cubic interpolating polynomial is the one used in forming Bézier curves:

$$
H(t) = f(a) \left(\frac{t-b}{a-b}\right)^3
$$

+
$$
3\left(f(a) + \frac{b-a}{3}f'(a)\right)\left(\frac{t-b}{a-b}\right)^2 \left(\frac{t-a}{b-a}\right)
$$

+
$$
3\left(f(b) + \frac{a-b}{3}f'(b)\right)\left(\frac{t-b}{a-b}\right)\left(\frac{t-a}{b-a}\right)^2
$$

+
$$
f(b) \left(\frac{t-a}{b-a}\right)^3
$$

Substituting $a = -0.04$ and $b = -0.07$, we have $f(a) = 1.001706559$, $f(b) = 1.005469831$, $f(a) 0.01 f'(a) = 1.002586423$, and $f(b) + 0.01 f'(b) = 1.003826164$. The resulting expression is

$$
H(t) = 1.001706559 \left(\frac{t + 0.07}{0.03}\right)^3
$$

+ 3(1.002586423) $\left(\frac{t + 0.07}{0.03}\right)^2 \left(\frac{t + 0.04}{-0.03}\right)$
+ 3(1.003826164) $\left(\frac{t + 0.07}{0.03}\right) \left(\frac{t + 0.04}{-0.03}\right)^2$
+ 1.005469831 $\left(\frac{t + 0.04}{-0.03}\right)^3$

The derivative has the general form

$$
H'(t) = f'(a) \left(\frac{t-b}{a-b}\right)^2 + 2\left(3f[a,b] - f'(a) - f'(b)\right) \left(\frac{t-b}{a-b}\right) \left(\frac{t-a}{b-a}\right) + f'(b) \left(\frac{t-a}{b-a}\right)^2
$$

where $f[a, b]$ is the **divided difference** $\left(\frac{f(b) - f(a)}{b - a}\right)$. For our special case, $f[-0.03, -0.07] =$ -1254424000 , and $3 f[-0.03, -0.07] - f'(-0.03) - f'(-0.07) = -.1239741110$, so that the derivative becomes

$$
H'(t) = -0.08798637078 \left(\frac{t + 0.07}{0.03}\right)^2
$$

+ 2(-.1239741110) $\left(\frac{t + 0.07}{0.03}\right) \left(\frac{t + 0.04}{-0.03}\right)$
- 0.1643667182 $\left(\frac{t + 0.04}{-0.03}\right)^2$

2c Statement. Compare the values in the table and part (a) for $t = -0.05$ and $t = -0.06$ with the values of $H(-0.05)$, $H(-0.06)$, $H'(-0.05)$, and $H'(-0.06)$.

2c Solution. Here are the results (again, as computed in Maple)

We notice a difference in the value of the function of about 10^{-8} as expected from a fourth order method with $h = -0.01$ and a difference in the valu of the derivative that is about 10^{-6} , indicating that it is a third order approximation. Since only the values of the function are computed by a fourth order method, this is reasonable.

End of workshop 8