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Introduction. The title of this workshop is borrowed from reference [1]. This book is the standard
introduction to the techniques used for extremely high precision computation. The algorithms described
here are also featured in the classical text [3]. A strikingly simple proof of the formula for the limit of this
iteration, with a discussion of its deeper significance appears in [2]. Although it could have appeared earlier
in the course, this workshop would have been a distraction while introducing topics needed for the midterm
exam.

Problem 1. This problem deals with the calculation ofπ by Archimedes. Archimedes proved that

223

71
< π <

22

7

by calculating theperimeters of regular polygons of 96 sidesinscribed andcircumscribed about a unit
circle. (Arc length forconvexfigures ismonotonic, so that the inscribed polygon has perimeter less than
2π and the circumscribed polygon has perimeter greater than 2π ). The reason for using 96 sides was that he
started with a hexagon and applied a formula that related the perimeters of the polygons withn sides to those
with 2n sides. You can do much better with your calculator (although you don’t have to — the calculator
has the value ofπ stored to the limit of its accuracy). In modern notation, the algorithm is simple.

1a Statement. Trigonometry gives that the perimeterIn of an inscribed polygon ofn sides and the
perimeterOn of a circumscribed polygon ofn sides are

In = 2n sin
π

n
= 4n sin

π

2n
cos

π

2n

On = 2n tan
π

n
=

4n sin π
2n cos π

2n

cos2 π
2n − sin2 π

2n

.

Introduce αn = 1/On andβn = 1/In and show thatαn + βn = 2α2n andα2nβn = β2
2n, leading to

α2n =
1

2
(αn + βn) and β2n =

√
α2nβn

1a Solution. From the given results, we conclude that

αn =
cosπ

n

2n sin π
n

=
cos2 π

2n − sin2 π
2n

4n sin π
2n cos π

2n

and

βn =
1

2n sin π
n

=
1

4n sin π
2n cos π

2n

=
cos2 π

2n + sin2 π
2n

4n sin π
2n cos π

2n

.
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Adding these gives

αn + βn =
2 cos2 π

2n

4n sin π
2n cos π

2n

=
cos π

2n

2n sin π
2n

= 2α2n.

Combining this with the intermediate form ofβn gives

α2nβn =
cos π

2n

4n sin π
2n

·
1

4n sin π
2n cos π

2n

=

(
1

4n sin π
2n

)2

= β2
2n.

These are the desired results.

1b Statement. One hasαn < βn for all n. In the doubling action of (a), theα’s are increasing, the
β ’s are decreasing, and they have a common limit that can be used to find the perimeter of the circle. If we
start with a hexagon,I6 = 6 andO6 = 4

√
3, and the limiting values ofIn and On asn → ∞ is 2π . In

terms of our new variables,α6 =
√

3/12 ≈ 0.14434 andβ6 = 1/6 ≈ 0.16667.
Show thatβn − α2n = (βn − αn)/2 andβ2n − α2n ≤ (βn − α2n)/2, so thatβ2n − α2n ≤ (βn − αn)/4.

1b Solution. Directly,

βn − α2n = βn −
1

2
(αn + βn) =

1

2
(βn − αn),

and

β2n − α2n =
√

α2nβn − α2n =
√

α2n

(√
βn −

√
α2n

)
=

√
α2n

βn − α2n
√

βn +
√

α2n
.

Now, αn ≤ α2n ≤ βn. Hence,
√

βn ≥
√

α2n, so

√
α2n

√
βn +

√
α2n

≤
1

2
,

as required. The final statement results from chaining these two inequalities.

1c Statement. Use this iteration to find the bounds onπ from the 96 sided polygon and show that
it implies the bounds attributed to Archimedes.

1c Solution. The values (to 9 decimal places) found by Maple are:α6 = 0.1443375673,β6 =

0.1666666667,α12 = 0.1555021170,β12 = 0.1609876378,α24 = 0.1582448774,β24 = 0.1596103662,
α48 = 0.1589276218,β48 = 0.1592686281,α96 = 0.1590981250,β96 = 0.1591833537. The upper bound
on π is 1/(2α96) = 3.142714598 and the lower estimate is 1/(2β96) = 3.141031951. To obtain good
fractional approximations, thecontinued fraction is used. The calculation subtracts the integer part of a
number and inverts to get a new quantity on which this process will be iterated. This gives

3 +
1

7 +
1

11.03852264

≤ π ≤ 3 +
1

7 +
1

143.0272636

The lower bound can be made smaller by replacing 11.03852264 by 10. Expanding this fraction gives
223/71. In the upper bound, 143.0272636 can be replaced by∞ to give the larger value 22/7. It is not clear



Mathematics 373 Workshop 9 Solutions, p. 3

why Archimedes didn’t use 11 instead of 10 in computing the lower bound. This would give 245/78, which
is not significantly more complicated.

If this construction is performed with a more accurate value ofπ the result is

3 +
1

7 +
1

15.99659976

and using 16 as an upper bound on the last quantity gives 355/113 as an upper bound onπ . It would take
many more steps of the Archimedes method to obtain this upper bound. (I got as far as finding the equivalent
of polygons of 6144 sides and had not yet obtained this upper bound. One more step does give this upper
bound.)

Problem 2. Instead of alternately calculating arithmetic and geometric means, Gauss investigated
the calculation of the two means in parallel. That is, start withα > β > 0 and setα′

= (α + β)/2 and
β ′

=
√

αβ. This makes a vast difference in the rate of convergence.

2a Statement. Show that

α′
− β ′ <

(α − β)2

8β

so that this operation is quadratically convergent.

2a Solution.

α′
− β ′

=
α + β

2
−

√
αβ =

α + β − 2
√

αβ

2
=

(
√

α −
√

β)2

2

Applying the mean value theorem for the functionf (x) =
√

x, for which f ′(x) = 1/(2
√

x) gives

α′
− β ′

=
1

2

(
α − β

2
√

γ

)2

=
(α − β)2

8γ

for someγ betweenα andβ. Since this expression is adecreasingfunction ofγ , anupper bound is obtained
by replacingγ by its lower boundβ.

Note also that the expression forα′
− β ′ is always positive, so we haveα′ > β ′.

2b Statement. Continue this process to form a sequence of pairs
(
α(n), β(n)

)
. The common limit

of theα(n) andβ(n) is called thearithmetic-geometric mean(or AGM , for short) ofα andβ. Gauss had
computed 20 decimal places of the AGM of 1 and

√
2 in 1791. Find this value to the full accuracy of your

calculator, and record the number of iterations required. How many did Gauss need to get 20 decimal places?

2b Solution. My calculator is Maple. I set it to give 50 digits, but I will only show the results rounded
to 15 places. The columns areβ andα. The first row should be considered as row zero since no calculations
have been performed on this given data.

1. 1.414213562373095
1.189207115002721 1.207106781186548
1.198123521493120 1.198156948094634
1.198140234677307 1.198140234793877
1.198140234735592 1.198140234735592
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Four steps of the calculation got us to the point whereα = β to the displayed accuracy.
Note, however, that afterthree steps, α −β is already less that 1.2×10−10. Squaring this and dividing

by 8 (this is an upper bound sinceβ > 1) shows that the values after 4 steps will differ by at most 1.8×10−21,
so 20 place accuracy would be found by retaining that much accuracy in the calculation that we have already
done. Thus Gauss needed onlyfour stepsto get a value of

1.19814 02347 35592 20744

My 50 place calculation shows that the last digit show above has been rounded up from 3 and gives the next
25 digits as

99224 92280 32387 82272 12663

2c Statement. In his diary entry for May 30, 1799, Gauss notes that the value of

2

π

∫ 1

0

dt
√

1 − t4
,

that he computed at that time seemed to be thereciprocal of the number found in (b). Compute this integral
by any method and compare to the result in (b).

2c Solution. The problem was incorrect as originally stated. The correction (that the two numbers
are reciprocal rather than equal) has been incorporated into this version. (Also thedt has been restored to
the integral.)

This integral is improper, so a direct numerical method will have difficulty with the fact that the value
of the integrand att = 1 is infinite. In order to get an integral that cam be evaluated numerically, we should
write t = sinu with dt = cosu du. The given integral is equal to

2

π

∫ π/2

0

√
cos2 u

1 − sin4 u
du.

Since cos2 u = 1 − sin2 u and 1− sin4 u = (1 − sin2 u)(1 + sin2 u), the integral is

2

π

∫ π/2

0

du√
1 + sin2 u

.

This integral can be evaluated by any direct method. For example, the composite trapezoidal rule with 2n

subintervals,n = 0, 1, 2 . . . gives

0.85355 33905 93273 76220 04221

0.83502 49857 60499 89746 64251

0.83462 70894 70804 99749 98348

0.83462 68416 74205 84319 18877

0.83462 68416 74028 96731 12771

0.83462 68416 74073 18628 14297
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and the last agrees with the inverse of the AGM obtained above. In my 50 digit computation, the two
values agreed to more than 45 places. This is shocking! The trapezoidal rule is onlysecond order, yet the
evaluation of the integrand at 17 points gives 13 digit accuracy and a mere 33 points suffices for more than
45 digits.

To explain this, recall the Euler-Maclaurin summation formula. This expresses the difference between
an integral of a functionf from a to b and a trapezoidal approximation as a sum of constant multiples
of f (k)(b) − f (k)(a) for all odd integersk. In this case, the integrand is(1 + sin2 u)−1/2 and sin2 u =

(1− cos 2u)/2, so the integrand is a function of cos 2u. The first derivative of such a function is the product
of a function of cos 2u with sin 2u. Since the derivative of sin 2u is 2 cos 2u and since sin2 2u = 1−cos2 2u,
the second derivative will be a function of cos 2u. It follows that the odd derivatives are all sin 2u times a
function of cos 2u and the even derivatives are all functions of cos 2u. Our endpoints are 0 andπ/2 and
sin 2u = 0 at both of these points. Thusall main terms in the Euler-Maclaurin summation formula are
zero. The error for the trapezoidal approximation is found by stopping the asymptotic representation at a
suitable place and considering the error term in the summation formula. The best stopping place will vary
with the number of terms in the sum. Details would take us too far from this course, but our observation is
no longer a mystery.

Comment. Gauss was eventually able to prove that these numbers were the same, and many other
proofs have been given. The rapid convergence of the AGM shows that the integral in (c) can be computed
quickly to high precision using the calculation in (b). The references explore this idea further.
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