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0. Introduction Although Laplace transforms were defined using an integral containing a param-
eter, the computation of transforms and inverse transforms used a special list of properties. This approach is
generally known as an “operational” approach. Techniques of integration appear only where necessary to
derive the properties that are taken as the basic properties of the transform. Although the properties of the
transform (except for linearity) are as exotic as the rules of calculus, they become easy to use with a little
practice.

Unfortunately, the treatment of Fourier coefficients in the text doesn’t develop a similar list of prop-
erties, relying instead on classical techniques of integration. Each exercise becomes a separate calculation
and results that provide structural hints to the form of the answer are hidden.

It is true that Fourier series don’t always converge, in the usual pointwise sense, to the function that
they represent, but the coefficients do tend to zero and the rate at which they decrease is related to the
smoothness of the function. This provides a visual clue to what to expect from a computation of Fourier
coefficients.

It is also true, to some extent, that term-by-term differentiation of the series corresponds to differentia-
tion of the function. This provides an interpretation of some rules that is easier to remember than what was
needed for the proof.

Part of the difficulty is that real Fourier series use trigonometric functions, so there are two functions
for each positive index, and the term with index zero needs to be treated differently. The use of complex
exponentials gives a single list of functions indexed by all integers, and the partial sums of the series are
taken to be the sum of terms with index between �n and Cn for integers n.

1. Real Fourier series Given a function f .x/ on the interval Œ�p; p�, its Fourier series is
given by
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where the Fourier coefficients an and bn are defined by
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assures us that the Fourier series of one of these functions is just the single term that is the function itself.
In particular, the Fourier series of a constant function is itself.

Also note that the constant term of the series a0=2 is the average value of f .x/.
Although it is customary to use only the expression defining f .x/ in describing exercises, the result

depends in an essential way on the interval Œ�p; p�. The functions in the Fourier series for this interval are
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all periodic with period 2p, so the actual function represented by the series is a periodic extension of f x.
Different values of p usually lead to different extensions. Once the function is extended to be periodic, the
integrals defining the Fourier coefficients can be computed using any interval of length 2p. The use of a
symmetric interval allows some saving in the case of even functions having only a cosine series or odd
functions having only a sine series.

Another consequence of the need to use a periodic extension is that a function for which f .p/ ¤ f .�p/
must be considered as having a jump discontinuity at x D p.

2. Examples Let

f .x/ D

�
1 if �a < x < a
0 otherwise

for some a with 0 < a < p. This is an even function, so bn D 0 for all n and
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for n > 0. We also have a0 D 2a=p. Since this is a pure cosine series, the an computed here give the
Frequency Spectrum defined in section 12.4 of the textbook. A special case of this example is Example 3
of that section, illustrated in Figure 12.19.

Let g.x/ D x on the interval Œ�p; p�. Except in the trivial case p D 0, we have g.p/ ¤ g.�p/, so
this function must be considered as having a jump discontinuity at x D p. Note that the location of the
discontinuity depends on p, so the common expression describes different function, with different series,
for different p. This is an odd function, so all an D 0 and
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Details have been omitted, but it is easy to see that our expression for the indefinite integral is correct
(we will describe a method of computing it later). To get the definite integral, we use sinn� D 0 and
cosn� D .�1/n for integer n.

Again, because this is a pure sine series, these coefficients give the Frequency Spectrum.
Note that both of these examples have Fourier coefficients that are a bounded quantity divided by n.

Convergence of such series is often difficult to establish since absolute convergence can’t be used.
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3. Complex Fourier series It is sometimes inconvenient to have two types of term, sines
and cosines, appear in the series. This means that almost everything will require the discussion of several
cases in proofs. The use of the identity

eix D cos x C i sin x

and its elementary consequences allows a unified approach to the theory at the expense of calculating with
complex numbers. We will see that this means computing a single complex quantity cn D .an � bni/=2 in
place of the two real numbers an and bn, the difference is mostly only a matter of bookkeeping. Although
we will also require c�n in order to describe the series, we have c�n D .an C bni/=2, so the two complex
numbers c˙n are complex conjugates for every real function f .x/. We will need to justify the division by
2 and our choice of which conjugate to call cn. This will appear in the course of describing how this is an
equivalent formulation of the Fourier series.

Combining our definitions,
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Although n > 0 was assumed in this calculation, the result is valid for all n.
The computation of cn using this expression applies to complex functions. If f .x/ D em�i=p for m ¤ n,
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since the exponents differ by an integer multiple of 2� (m ¤ n was assumed when we wrote a formula
requiring division by this quantity). When m D n, the integral reduces to the integral of the constant
function 1 over an interval of length 2p divided by the length of the interval. so it is 1. Again, we see
that each basic function, and hence each linear combination of basic functions, has a Fourier series that is
itself.

4. A shifting theorem Let functions of period 2p be related by g.x/ D f .x � b/. We
(temporarily) denote the complex Fourier coefficients of f .x/ by Œf �cn and those of g.x/ by Œg�cn. Then
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A consequence of this is that f and g have the same Frequency Spectrum.

5. Differentiation The expression x has derivative the constant function 1. However, in the
context of Fourier series, this represents a piece of a periodic function having a single jump discontinuity.
Its Fourier series primarily shows the signs of being influenced by this discontinuity. If a function has more
than one jump discontinuity in a period, it can be written as a sum of a function taking only two values and
a function with fewer jumps (see Exercise C).

If a periodic function is continuous except for at most a single jump continuity, we may choose an
interval having the discontinuity at the endpoints to represent a period of the function and use this interval
in computations.

Let us also assume that the function is piecewise differentiable; that is, the period interval can be
written as a union of a finite number of closed intervals such that he function is differentiable on the interior
of each of those intervals, and both one-sided derivatives exist at the endpoints. Visually, this says that
the graph of the function is smooth except for a finite number of corners. The Fourier coefficients of this
function will be a sum of integrals over each of the intervals on which the function is nice. On each of those
intervals Œa; b�, consider the integration by parts formula obtained from the derivative of f .x/e�n�ix=p:
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The complex Fourier coefficients of f 0.x/ are found by adding the terms on the left over all intervals Œa; b�
and dividing by 2p. In the first term on the right, each interval contribute the value of f .x/e�n�ix=p at the
point with a positive sign if it is a right endpoint and a negative sign if it is a left endpoint. Our assumption
of continuity says that all of these terms cancel except for the terms belong to the end of the period interval.
The second terms on the right combine in the same way as the terms on the left to give the complex Fourier
coefficients of f .x/ (ignoring the finite number of points at which it fails to exist) multiplied by n�i=p.
This factor is exactly the factor expected from term-by-term differentiation of the Fourier series.

In the case of g.x/ D x on the interval Œ�p; p�, considered in Section 2, the derivative is the constant
function 1, so its Fourier series consists only of this constant term, and this constant is completely deter-
mined by the change in the function over a period. Our previous values are easily obtained from this general
formula: in fact, our computation followed this general computation.

6. Exercises
A. Use linearity and the results of examples in this document to find the Fourier series of f .x/ D 5xC3

on the interval Œ��; ��.
B. Consider the following three functions on Œ��; ��, each of which takes the value C1 1/6 of the time,

�1 1/6 of the time, and 0 the remaining 2=3 of the time:

f .x/ D

8<:
1 0 < x < �=3

�1 ��=3 < x < 0

0 otherwise
; g.x/ D

8<:
1 �=3 < x < 2�=3

�1 �2�=3 < x < ��=3

0 otherwise
;

h.x/ D

8<:
1 �=3 < x < 2�=3

�1 ��=3 < x < 0

0 otherwise
:

Use linearity and the results of examples in this document to find the complex Fourier series and the
Frequency Spectrum of each of these functions.
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C. Consider the function on Œ�1; 1� defined by

f .x/ D

�
x �1 < x � 0

1 � x 0 � x � 1
D

�
0 �1 < x � 0

1 0 � x � 1
C

�
x �1 < x � 0

�x 0 � x � 1
:

The first expression shows two jump discontinuities in a period (at x D 0 and at x D 1). The second writes
it as a sum of a function taking only two values and a continuous function. Since the second function is
continuous, its Fourier series can be found by the method of Section 5. Use this to find the Fourier series of
f .x/ on this interval.
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