Mathematics 421 Essay 1

Using the Laplace transform
Spring 2010

0. Introduction The Laplace transform of a function of ¢ is a function of a new variable s
defined by

L)) = /0 Fe™" di

This is an improper integral, so convergence must be considered. Typically, the integral will exist only for
sufficiently large s, but explicit consideration of this restriction is usually not necessary. The functions that
we will transform are covered by an existence theorem that guarantees that the integral exists for s > a for
a piecewise continuous function f(¢) with | f(¢)| < Ke? fort > 0.

In section 4.1 of the textbook, an example was given in which this definition was easy to use:

1
s—a

£{e} =

The special case with @ = 0 should be noted, since it says that the Laplace transform of the constant
function 1 is 1/s. This is often overlooked when this appears as part of a larger problem like the solution of
a differential equation. However, it will turn out that even the transform of ¢’ is a consequence of general
properties of the transform and the special case a = 0. The definition will be used only to derive general
properties, and these properties will be recorded in tables that will be available on quizzes and exams.
In stating these properties, only the simplest version will be shown; repeated application will be done as
needed rather than combined into impressive, but relatively useless, results. Many general proofs require
mathematical induction, but the main applications involve very few steps, so nothing is gained in most
cases by pretending that there is a general formula. Similarly, the table in the textbook often contains a
parameter, like the a in the formula for £ {e‘” } mentioned above. In using these formulas, the value of the
parameter should be inserted immediately. Including the parameter as a symbol only makes it more difficult
to work with the formula. In any single problem, you will usually be working with only one instance of the
formula.

1. Linearity The most important property of the Laplace transform is linearity. This is a direct
consequence of the linearity of integration. The basic statements are

LU} = F(s) = Li{c f(1)} =c F(s)
LUf(@)) = F(s) and L{g(0)} = G(s) = L{f(1) +g0)} = F(s) + G(s)

Repeated use of this rule deals with a sum of arbitrarily many terms, each of which is a product of a
constant and a known function. The generalization to such expressions has been common since the first
course in algebra. Such general expressions are called linear combinations of the known functions.

In addition to determining transforms, it will be necessary to find inverse transforms. Thus, any func-
tion that can be written as a linear combination of terms of the form 1/(s — a) can be recognized as the
Laplace transform of a linear combination of the corresponding ¢%’. The method of partial fractions pro-
duces such an expression from some quotients of polynomials. Quotients of polynomials are called rational
functions; and a rational function is called proper if the degree of the numerator is strictly smaller than the
degree of the denominator. The functions that are Laplace transforms of linear combinations of exponentials
are proper rational functions whose denominator is a product of distinct factors of the form x — a.
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In the first course on Differential Equations, solutions of linear differential equations with constant
coefficients were found by assuming a solution of the form y = e¢?’. Some equations had solutions that
were trigonometric functions, and these could be found using Euler’s identity e’ = cost + i sint. This
leads to ) . ) .

eit 4 it el — pit
cost = — and sint = ————

If we accept these formulas, then

1/ 1 1 s
oc t == — =
teos 1 2(s—i+s+i) 21

1/ 1 1 1
tsint} m(s—i s+i) 21

These formulas can also be obtained by characterizing the trigonometric functions as solutions of initial
value problems. We illustrate this in section 3.

2. Derivatives 1f you use integration by parts in the definition of L{ f'(¢)}, you get

/0 Fl0edr = e O + s [0 Fe™ di = —£(0) + sLLF()}

provided that lim;—, o f(¢)e™" = 0 for sufficiently large s (such f(¢) are said to be of exponential order,
and this has already been assumed to assure the existence of the Laplace transform).

Theoretical aside.The existence of the Laplace transform of a function of exponential order is Theorem 4.2
of the textbook. Theorem 4.5 refines this method of proof to show that the transform always approaches
zero as s — oo. In the case in which the transform is a rational function, this says that it is always a proper
rational function. The partial fraction decomposition will then be a sum of proper partial fractions. If the
denominator has degree 1 this only allows constant numerators, but our formula for J£{cos ¢} shows that a
numerator of degree 1 is required when the denominator has degree 2. Also note that

Jim $F(s) = £(0) + lim L{f'()} = f(0).

Repeated use of the formula for L{ f/(¢)} gives expressions for the Laplace transform of derivatives of
any order, but it is probably easier to invoke this formula twice to get an expression for £{ /" (¢)} than to
remember the resulting formula, and derivatives of order higher than this will not usually be needed in this
course. In particular, the formula found in the text for L£{ f”(¢)} will not be included in the formula sheet
supplied with exams, so you should practice using the basic formula twice in all exercises involving second
derivatives.

An important application of this is the use of Laplace transforms to solve initial value problems.
Suppose that y(¢) satisfies a linear differential equation with constant coefficients whose right side has
a known Laplace transform, together with initial conditions at ¢ = 0 that serve to define y(¢) uniquely.
Assume that L{y(z)} = Y(s). Then, the Laplace transform of the left side of the equation is the product
of a polynomial in s times Y (s) plus another polynomial in s. This polynomial will be of lower degree than
the coefficient of Y(s). Equating this to the Laplace transform of the right side gives a linear algebraic
equation for Y (s). If the Laplace transform of the right side is a rational function, then Y (s) will also be a
rational function. It is also guaranteed to be proper. The solution of the initial value problem is reduced
to partial fractions and some basic examples of Laplace transforms. This often leads to a better organiza-
tion of initial value problems, but it gives the same solution that you would find by traditional methods.
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The factors of the denominator of Y (s) are determined by the exponential functions that satisfy the corre-
sponding homogeneous equation and the functions appearing on the right side. In case of repeated factors
in the denominator of Y (s), the Laplace transform method finds the polynomials multiplying exponential
functions in the solution directly without the use of undetermined coefficients. The whole process is also
considerably simpler than variation of parameters.

It is usually easier to simplify the rational function to a single fraction before attempting a partial frac-
tion decomposition. Individual terms in the numerator are no easier to work with than the whole expression.

Linearity tells us that L£{0} = 0, so the rule for derivatives gives

0= L{0} = sL{1} — 1

from which we conclude the previous result that L{1} = 1/s. The transform of higher powers can be found
by mathematical induction using the derivative formula for f(z) = " which is

n£{t"_1} = sL{t"}

forn > 0.
Applying the rule that Laplace transforms tend to zero as s — oo to L{ f/(¢)} tells us that

lim sF(s) = f(0)
S—>00
This is an example of information about a function being visible in its Laplace transform.

3. Examples A complete systematic solution of an initial value problem for y(¢) begins with
a definition of Y(s), and uses the given equation to determine its properties. These properties determine
Y(s). Then, we find its inverse transform to solve the equation. This can also be used as an alternative
determination of basic formulas since functions like the exponential and trigonometric functions can be
defined as the unique solutions of initial value problems.

A. The function e’ is the solution y(¢) of the initial value problem

2 a4y =0 0) =1
g =0 y(0)

The steps of the solution are
L{y(t)} = Y(s) (definition)

L{y'(t)} = sY(s) — 1 (initial condition)
(s —a)Y(s) — 1 = 0 (differential equation)

Y(s5) =

(solve for Y)
s—a

y(t) = e*" (inverse transform)

B. Similarly, cost is the solution y(¢) of the initial value problem

d?y
— =0, 0)=1, "0)=0
2 T y(0) y'(0)
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The steps of the solution are

Ly @)} =Y(s)
LY} =sY(s)—1
L")} =s(sY(s)— 1) =s>Y(s) —s
(s24+ 1)Y(s)—s=0

s
Y(5) = ——
() s2+1
y(t) = cost

C. Another simple example is sin k¢, which is the solution y(¢) of the initial value problem

dzy 2 /
WJrky:O, y(0) =0, y'(0) =k

The steps of the solution are

L{y (1)} =Y (s)
L4y} = sY(6)
L{y" 1)} =s(sY(s)) —k = s>Y(s) —k
(s24+k>Y(s)—k=0

k
Y(s) = v e
y(t) = sint

Note that, if the differential equation is used to define these functions, these steps compute the Laplace
transform using only the formula for &£ f/(¢) and the knowledge that the integral defining the Laplace
transform of these functions is known to exist.

D.If y(t) =t cost, then y'(t) = —t sint + cost and y” (1) = —t cost — 2sint, so y(¢) satisfies
d?y

5 ty==2sint, yO =0 YO =1

We know that y(¢) has a Laplace transform, and this equation can be used to find it. The steps are

L{y @)} = Y(s)
LYy (1)} = sY(s)
L{y" (1)} =s5(sY(s)) — 1 =5Y(s) — 1

-2
2
DY(@G)—1=
(4 DY)~ 1= 5
-2 s2—1
2
DY) =1 =
(S+)(S) +S2+1 s2 41
s2—1

YO =



Mathematics 421 Essay 1, p. 5

4. Scaling the argument  Consider functions f(¢) and g(t) related by g(t) = f(bt) for
some constant ». Denote the transform of f(¢) by F(s). Then, the substitution u = bt gives

6 = £150)} = [ " ge s dr
= /Ooo f(bt)e " dt
= /0 ” fu)e™su/b %du
= % /O " Fae 6P gy

1
= F((s/))

As in this computation, the convention of using the corresponding upper case letter to name the Laplace
transform of a function named by a lower case letter is used throughout this subject. Here are some examples
of scaling:

1 1 1
aty _ _
£{e }_a(s/a)—l s—a
1 1 k
Skt = e Sr 1 21k
1 k
L{coskt} = s/ -

k(s/k)2+1  s2+k2

This result also tells us the form of the transform of f(z) = ¢". If L{f(¢)} = F(s), then

inF(s) = OC{ (5)"} = cF(cs).
c c

That is, multiplying s by ¢ multiplies F(s) by ¢!, so that F(s) is of degree —(n + 1). Indeed, making
the substitution ¥ = st in the integral defining J£{¢"} gives the form of the transform and an expression for
the constant factor for arbitrary real values of n > —1. Exercise 41 in section 4.1 asks for the details. This
is also discussed in Appendix II . In the notation of these references to the textbook, we have

o] oo —1
cC{la_l} =/0 toe—le—st dt =/0 (%)a e_uci_u

with u = st. Thus, the transform is s~ multiplied by the constant

[e.@]
F(a)z/ u* e ™ du.
0

Integration by parts, as in the process for finding the Laplace transform of a derivative, shows that I (o +
1) = o' (o) when both I'(«) and I' (o + 1) exist. Assuming this property in general extends the definition
of T'(«) to all @ other than the nonpositive integers. For positive integers, I'(«) = (o — 1)! because of the
recurrence and the value I'(1) = 1 obtained from direct computation.
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5. Multiplying by an exponential suppose g(r) = ¢ f(z). Then

G(s) = /0 T st at f@t)dt = /0 " G-ar f(t)dt = F(s —a)

In particular,

s—a b
_ d Liesinbt)! = ———
(s —a)? + b? an e sinbrj (s —a)? + b?

L{e cosht} =
Note that every linear function can be expressed as a linear combination of s — a and b, so the proper
fractions with denominator (s — a)? + b? are Laplace transforms of linear combinations of e% cos bt and
e sin bt. These formulas may be expanded to simplify the expressions for the transforms. Conversely, we
can use completing the square to return to this form when computing an inverse Laplace transform.
The methods given so far allow the Laplace transforms of all " ¢4’ cos bt and t"e?! sin bt to be found
from the special cases in whicha = 0 (and b = 1 if the trigonometric factor is present), although cases with
n > 1 that include a trigonometric factor do not lead to easy general formulas. Finding inverse transforms
uses standard algebraic techniques to recognize the relation between the given expression and the transform
of a simpler one. The use of complex numbers is probably the best route to finding the transforms of
t" cost and t" sint for n > 0. One has

n 1 ! !
LA{t" cost} = E((S_i)n-l—l + (s +i)n+1)
n . 1 1 !
L{t"sint} = E((S — )yt o (s + l')n+1)

These fractions may be combined over a common denominator of (s? + 1)**1, but the numerators consist
of the sum of alternate terms in the expansion of (s & i)”*!. The binomial theorem gives an efficient
computation of the terms, but there are still roughly n/2 terms in each of the numerators of the transforms.

This also leads to a difficulty when computing inverse transforms with these denominators because the
simplest transforms are not in the form of linear expressions divided by powers of x? + 1 as produced by
the usual partial fraction decomposition. In place of this, there is a particular polynomial of degree n + 1
that appears in the transform of ¢” cos¢ or one of degree n that appear in the transform of " sinz. When
finding an inverse Laplace transform, one first determines the terms containing ¢” to leave a problem of
finding an inverse transform of a expression with a lower power of x? + 1 in the denominator. This could be
done with an arbitrary quadratic factor, but it is probably better to use completing the square and scaling
to reduce to the this special case before attempting this analysis.

When n = 1, the binomial theorem gives

s2—1 (24 1)-2

L{tcost} = =
{ cos } (S2 + 1)2 (S2 + 1)2
o 2
Cs241 0 (524 1)2
. 2s
oC{[ Sll’lt} = m

From this, we see that L{sin? — ¢ cost} = 2(s% + 1)72.
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6. Series Assuming that the operations (essentially an interchange of limits) can be justified, the
formula £{t"} = n!s™""! leads to

2\ ant" > a
n n
This allows all coefficients of the Taylor series for f(¢) about 1 = 0 to be related to those in a series

expansion of F(s) in powers of s ! — which could be called a series expansion at infinity. The expansion
of f(t) is required to be very strongly convergent because of the 7! in the denominator, in order to allow
the series for F(s) to converge anywhere. However, these conditions are satisfied for the solutions of
linear differential equations with constant coefficients that are the main examples used for f(¢). Laplace
transforms are typically defined only for s > ¢ for some c, so a series for the transform should have the
same property. This requires that the coefficients a; should grow no faster than ¢”.

In particular,

os) m
eat — } :an_'
n!

n=0

so that

nd a
oC{eat} = Z Sn+1

An interesting example is the Bessel function of order zero. This function satisfies
ty"+y +ty=0.

This equation is singular, but the method of Frobenius assures us that there is a unique solution with
y(0) = 1, and it gives a series for this solution that converges for all ¢. In fact, there is a recurrence for the
coefficients that allows the coefficient of " to be compared to 1/n!. The resulting series is

e (_t2)n
Jo(t) = Zo ()2

The coefficients of this differential equation are polynomials in ¢ and not constant, so the formula to be
discussed in Section 10 below produces a differential equation for the Laplace transform of this function.
That equation turns out to be first order, so there is a standard method to get a closed form solution. The
result is

L{To(1)) = (2 + 1)7V2,

It is an interesting exercise to show that the closed form solution for Y (s) is represented by the series found
from the sum of the transforms of the terms in our series for Jo (7).
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7. Partial fractions

If a Laplace transform is a rational function has a denominator [ [(s — «;), with n factors, then the
numerator has degree less than n because the function must have limit zero as s — oo. Such rational
functions are called proper by analogy to arithmetic proper fractions that have numerators that are smaller
than their denominators. The inverse Laplace transforms of such expressions can be found using the partial
fraction decomposition that was used to integrate such expressions. In the case in which all factors of the
denominator are different linear factors the decomposition is easily found by the method that the text calls
the “cover up method” (page 205). In this method, a proper rational function is written as a sum of simpler
expressions of the same type. Concentrating on a single term, we get:

PG) A P

(s—a)Q(s)  (s—a) Q)

where Q(a) # 0 (indicating that (s — a) does not divide Q(s)), and all fractions are proper fractions.
Multiplying by (s — @) and evaluating at s = a gives

_ P(a)

- 0

This works because a proper fraction with a linear denominator has a constant numerator.
If Q(s) is also divisible by s — b (with b # a), we can write Q(x) = (x — b) R(x) there will also be a
partial fraction B/(s — b) with

()

(%)

_ PO
~ (b—a)R(b)

but B should also equal P;(b)/R(b), by applying (*) directly to the fraction P;(s)/Q(s) obtained after
removing A/(x —a). Since P(s) = AQ(s) + (s —a) P1(s),and Q(b) =0, P(b) = (b —a)P1(b), and we
get the same term B/(s — b) whether we start from the original fraction or from Py (s)/ Q(s).

The partial fraction decomposition is a special case of the fact that, if Q¢ (x) and Q1 (x) are polynomials
over a field (an algebraic system like the real numbers, complex numbers or rational numbers that allows
addition, multiplication and division — except that division by zero is not allowed) have no common factors
(other than constants), then there are polynomials Ay and A; (with coefficients in the same field) such that

A1Qo+ AoQ1 = 1.

The proof uses the Euclidean algorithm, which also gives an efficient computation Ay and A;. If the
degree of Ag in such an equation is of the same degree as Q¢ or larger, then one can subtract a certain
multiple of Q¢ from Ay and add the same multiple of O to A; to get other choices of Ay and A; with
the same property and having the degree of A less than the degree of Qg. In this case, the degree of A
will automatically be less than the degree of Q. If this equation is divided by Q¢ Q1, the result is a partial
fraction decomposition of 1/(Q¢ Q1) as a sum of proper fractions whose denominators are Q and Q1.
This equation also gives
(PA1) Qo + (PAg)Q1 = P.

for any polynomial P. If the degree of P is less than the degree of Q¢ (Q1, the use of division to replace PAg
by a polynomial of degree less than the degree of Qg, with a corresponding change in the other term, leads
to a partial fraction decomposition of any proper fraction with denominator Q¢Q; as a sum of a proper
fraction of denominator Q¢ and a proper fraction with denominator Q. All that is needed is that Q¢ and
Q1 have no common factor. In the simplest case of the Euclidean Algorithm, one gets

l-(x—a)+ (1) -(x—b)=b—a.
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The general method and the cover-up method are almost identical in this case.

Note that each linear factor of the denominator is determined separately by this method. If there are any
irreducible quadratic factors or repeated linear factors in the denominator, they can be left until all simple
linear factors have been removed by using () to identify the numerator in the first term on the right side
of (x) for each simple linear factor and subtracting that term to leave a simpler fraction. In finding the
numerators for each factor of the denominator, the original numerator P(x) may be used for all factors
with an appropriate choice of Q(x) for each factor. It is unusual for there to be more than one factor in
the denominator that is not a simple linear factor, so the standard approach to partial fractions is to use the
cover-up method to identify all the partial fractions with linear denominators, then subtract them from the
given fraction and simplify. This will check the previous work because the linear factors already used must
not be present in the simplified difference.

Linear fractions of higher multiplicity can be handled by the following variant on ()

P(s) A P1(s)
Goaf0G)  G-aF | G-af100)

Here, multiplication by (s — a)* and evaluating at s = a again gives () although a factor of (s — a)*~!
remains in the denominator. This allows a linear factor of multiplicity k to be removed in k steps, provided
that the complementary term is found as part of each step.

If there is only one quadratic factor, the terms belonging to the other factors of the denominator can
be found are subtracted from the original expression. When common factors are removed, the result will
have only this factor in the denominator. However, there seems to be no easy way to deal with more than
one quadratic factor using algebra with real numbers only. The need for quadratic factors will disappear if
complex numbers are used, but this makes the algebra more difficult.

8. Systems A system of differential equations with the same number of equations as there are
functions to be determined, together with suitable initial conditions, can be solved by applying Laplace
transforms to replace the system by a system of linear algebraic equations for the transforms of the solutions.
In many cases, a solution of these equations can be found directly. This requires no modification of the
system prior to applying the Laplace transform. For example, if there are only two equations (and only two
unknown functions), the simple formula for the inverse of a 2-by-2 matrix gives a formula for the Laplace
transform of the solution with little effort, even when the equations in the system are not of first order. The
study of the double pendulum in Example 3 of Section 4.6 of the text gives a striking example of this
method.

9. An example Exercise 10 in section 4.6 asks to use Laplace transforms to solve

dx d3y )
E_4X+W = 6sint
dx d3y

— +2x—2—==0

dt X dt3

with initial conditions x(0) = y(0) = y’(0) = y”(0) = 0. If L{x(¢)} = X(s) and L{y(t)} = Y(s),
then the initial conditions give £L{x’(t)} = sX(s) and L{y"'(t)} = s3Y(s), so Laplace transform of the
equations may be written in the simple matrix form

s—4 2 [X7_ 1 [61_ 6 [1
S+2 —2S3 Y _s2+1 0 _s2+1 0
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The determinant of the coefficient matrix is
P (=2(s —4) — (s +2)) = -3s°(s —2)

and the cofactor expression for the inverse gives

X7 2 253
v |~ memmen [

_ 4 Y % +2)
=224+ s—2  s2+1
where the first term is found by the cover-up method, and the second by simplifying the difference of the
left side and the first term, which is

Thus,

20—4(s>4+1)  16—4s>  —8—ds
55 —2)(s2+1)  5(s—2)(s2+1) 5241

From the basic transform pairs, we get
4 4 8
x(t) = —e* — —cost — —sint
5 5 5

8 8 4
x'(t) = ge” - gcost + gsint

" 8 2t 8 6 :
y (t)—se 5cost 5smt
where the first line is the inverse transform of X(s), the second line is found by differentiating x(z) and
the third line is the common value found by solving each equation in the original system algebraically for
y"'(t). This checks that x(¢) is a solution of the differential equations, and it is easy to see that it satisfies
x(0) = 0. From this, one could integrate — keeping track of the initial conditions — to find y(¢). However,
we want to illustrate the use of partial fractions to write

B 2s +4 _A(s) b C(s)
Cos3(s—2)(s2+1) 83 s—2  s2+1

with A of degree 3 and C of degree 1. The cover up method produces terms of

I s3(s2+1)
55 —2) 553(s—2)(s2+1)
-2 —10(s —2)(s* + 1)
3 553(s—2)(s2 + 1)

With the denominator of the expressions on the right, including the numerical constant 5, the original
numerator of Y(s), found in the matrix solution, is 10s + 20. Subtracting the two numerators above from
this gives —s> + 95> — 2052 + 20s. This is clearly divisible by s, and it must be divisible by s — 2 if our
work is correct. Division reveals it to be s(s — 2)(—s> + 252 + 55 — 10). The unidentified partial fractions
add to
—s3 252+ 5510
552(s2 + 1)
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Another application of the cover up method gives a term of —2/s%> = —10(s> + 1) / (5s2 (s24+1) )
Subtracting this leaves (—s? + 8s + 5) / (55(S2 +1) ) After one more step, we have the full partial

fraction decomposition
1 2 2 1 8 — 6bs

55 —2 3 s2+§+5(s2+1)

Taking inverse transforms gives

1 5 2 8. 6
1) = —e 1—2¢t—t¢ —sint — = cost.
y(@) zen +3si 5

"

From this, it is easy to obtain values of y’, y”, and y”” to check all initial conditions and the previously

discovered value of y””’.

10. The derivative of a transform Assuming the validity of differentiating with respect
to the parameter s under the integral sign, one has
oo

F'(s) = %/Ooo f(t)e St dt = /O —tf(t)e St dt = —Lytf(1)}.

In particular,

d 1 2s
Litsint} = —— =
sty = = T T~ 21172
d 21
L{tcost} =— > >

dss2+1  (s2+1)2

This agrees with the results obtained using partial fractions over the complex numbers. However, neither
approach provides a simple way to evaluate inverse transforms of expressions with denominator (s + 1)"
for large values of n. Symbolic calculation systems like Maple have routines for handling this case, but
there may not be a suitable general method for hand computation. The only expressions that are suitable for
hand computation are of low enough degree that there are few opportunities for complicated expressions to
arise. In the examples arising in this course, this property can be avoided. It is included because it is easily
proved using an interesting method.
The function

o= (255)

approaches 0 as s — oo and has
—G/(S) — ebt — e

This corresponds to this formula for
ebt __ Lat

gty = ——°

£{ w} = arctan (l)
t K

Another interesting example is
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11. Functions defined by cases There is one more formula for Laplace transforms that
is part of the general toolbox. If a function of ¢ is zero for < a and given by some formula for larger ¢,
the Laplace transform integral is best evaluated by the substitution ¢ = a + u. This introduces a factor of
e~ % and changes the integral to an integral in ¥ from zero to infinity. This integral is the ordinary Laplace
transform of the expression for our function in terms of u. To write this as a formula, we introduce the
Heaviside function U (¢t — a), defined by

0 ift<a
‘u(t_“)z{l itr>a

Then, for a > 0,
LLf(t—a)U(t —a)} = e P F(s).

The proof of this formula consists of rewriting the definition of L{ f(t —a)U(t — a)} as follows

LU - a)Ult —a)} = /oo £t - @)Ul —a)e™ di
0
= /00 f(t —a)e ™' dt
_ / T fe @ dy = 9 F(s)
0

The first step uses the definition of U (¢ — a) to restrict the domain of integration; then a new variable
is introduced that goes from O to oo on this domain; and the result is interpreted in terms of the known
transform of f. Note that there is an implicit factor of U(z) whenever we are taking a Laplace transform
since only values of # > 0 are considered when evaluating the integral in the definition of the Laplace
transform.

This formula can be difficult to interpret. We are accustomed to doing calculus with expressions
containing the variable although we have always claimed to be working with functions. This property
uses a function of # — a. However, the function will be usually be given by an expression that shows its
dependence on ¢ in simplified form. This expression must be modified to describe the function in terms of
t — a in order to identify the function denoted by f in the formula. There are often many ways to do this,
so we prefer not to attempt to give a formula for working with the original expression. Once the function
has been identified, its Laplace transform can be found.

Any function defined by cases may be written in an equivalent form using Heaviside functions. If the
expression defining the function changes at = a, a term is introduced with factor of U (¢ — a) multiplying
the change from the expression used for x < a to the one used for x > a.

To retrieve a definition by cases from one using Heaviside functions, the value in each interval is the
sum of the expressions multiplying U (¢ — a) with smaller values of a.

When using this formula to find Laplace transforms, one must be careful to express the quantity mul-
tiplying U (¢ — a) as a function of ¢+ — a. The alternate formula in formula (6) on page 213 of the text
should not be used. It is always dangerous to try to work with two formulas that are minor variations of
one another since you can wind up with a meaningless mix of parts of each formula. In most cases, it is
easy to see how to write the expression multiplying U (¢ — a) in terms of ¢ — a, so there is no need to try to
develop a formula for the process.

When finding inverse transforms, terms with the same e ~%® factor are collected together and the inverse
transforms of each of these clusters is found separately. In applications to differential equations, this
usually finds a continuous solution even when there is a discontinuous driving force.
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A convenient way to work with this is to use a graphical description of the function. If the graph of
f(¢) if known, then the graph of f(t — a)U(t — a) is found by translating the known graph «a units to the
right.

As an example, consider

t if0<t <1
fO)y=32—1t ifl<t<?2
0 ift >2

whose graph consists of line segments from (0, 0) to (1, 1), from (1, 1) to (2,0) and then a ray along the
horizontal axis to the right.

Instead of working with formulas, we use a graphical method of finding F(s) starting from the function
g(t) = t with G(s) = 1/s2. Translating this graph one unit to the right gives a parallel line representing the
graph of g(t — 1)U (¢ — 1) having a Laplace transform of ¢™* /s2. Subtracting the second function from the
first gives a line from (0, 0) to (1, 1) followed by a horizontal ray. The Laplace transform of this function
is ( 1—e* ) / s2. Translating this graph one unit to the right gives a line from (1, 0) to (2, 1) followed
by a horizontal ray. The Laplace transform of this function is e_s( l—e™* ) / s2. Subtracting the second

function from the first gives the desired function and shows that its Laplace transform is ( 1—e* )2 / 52,

An extension of this method invents generalized functions like the Dirac delta function §(z — @) that
acts like a derivative of the Heaviside function. Physically, it plays the role of an impulse that effects
an abrupt change in momentum when the terms in the equation represent forces. Its Laplace transform is
e~ . It may be used formally in a solution of differential equations by Laplace transforms and gives rise to
a continuous solution of the equation. When made rigorous, this shows that any physically realizable force
approximating an impulse leads to motion approximating this solution.

12. Periodic functions Theorem 4.10 of the text expresses the Laplace transform of a function
f(t) that is periodic of period T in terms of the integral over the period [0, T]. This is of questionable
value! Thee main thrust of all other results about Laplace transforms is that transforms should be calculated
without explicit evaluation of integrals. It would be strange if an integral over a bounded interval would
become simpler that the integral from 0 to co that we have worked so hard to avoid.

As an extreme example, consider f(¢) = sin(¢). This function is periodic of period 27, but we already
know that F(z) = 1/(s? + 1). What possible benefit could there be in describing F(s) as

1 2w
/ e Stsint dt?
0

1 — eZns

Indeed, since we know F(s), it is more useful to turn this around and get that (1 — ¢27%)/(s®> + 1) is the
Laplace transform of the function g(¢) that is equal to sint for 0 < ¢t < 27 and O for ¢ > 2m. This is the
same result that is obtained by using Heaviside functions to express g(¢) = sint — ( sin(t — 2m) )‘U(t —21).

The exercises in the use of Theorem 4.10 typically involve a function defined by cases. The periodic
function contains an infinite number of cases, while the restriction to [0, 7'] has only finitely many cases.
In this case, what Theorem 4.10 tells us is that

(1 =e™™LLf(O)}y = LU) = [t =THYUC = T)} = LU (1) = f(OUC = T)}

if f(¢) is periodic of period T.
If there is also a relation between f (7 —t) and f(¢), it can be even simpler to consider f(¢)+ f(¢) U(t—
T/2).
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13. Convolution  There is one more operation inspired by the study of Laplace transforms. The
convolution of f(¢) and g(¢), denoted by (f * g)(¢) is defined by

t
(f x00 = [ f@st -0 dr
0
A change of variables in the sector defined by 0 < 7 < ¢ < oo in the (7, t) plane shows that

LIS 8O} = F(5)G(s).

This is the subject of theorem 4.9 of the text.
The case where g(¢) = 1 gives

(f *8)(1) = /0 f)dr.

Since G(s) = 1/s in this case, we have

OC{[()tf(r)dt} _ o

S

Note that the function on the left side of this equation has derivative f(¢) by the fundamental theorem of
calculus and is zero at ¢t = 0. Hence, this special case is an alternate form of the formula for the transform
of a derivative.

Since we are trying to avoid explicit integration, we should not consider inverting a product of trans-
forms into a convolution. Instead, this formula is used to identify places where convolutions arise and use
the formula to determine the transform. In particular, an application to the Volterra integral equation in
Section 4.4 (page 222) is a striking use of the idea of convolution.

Little more needs to be added to the treatment in the textbook except to note that it may be easier the
find the inverse transform of a rational function that is a product of two transforms using partial fractions
than to compute a convolution directly, since the convolution integral may require integration by parts, while
the direct computation uses only the algebraic operations of finding partial fractions.

When solving linear differential equations with constant coefficients, the functions that arise are only
those whose Laplace transforms are rational functions (if the driving forces have this property).

13. Summary Note that more than one rule may apply to a given expression. Since all rules are
consequences of the definition, you can be sure that any correct application of the rules will determine
the same expression for the Laplace transform or its inverse. The availability of alternate methods of
computation should be used as an opportunity to check your work and your understanding of all the rules
for working with Laplace transforms.

The use of Laplace transforms to solve initial value problems must give tthe same solution as any
other method. In particular, any information that you can get using undetermined coefficients will also
be obtained when using Laplace transforms. Indeed, for linear equations with constant coefficients, the
transform of the solution has denominator equal to the product of the denominator of the transform of
the right side and the characteristic polynomial obtained when solving the corresponding homogeneous
equation. The main benefit of using Laplace transforms is that there is a unified algorithm based on partial
fractions that does not require introducing the initial conditions after finding the general solution of the
differential equation. The remark at the end of Section 4.2 of the text shows that there is an expression as a
sum of zero-input response and zero-state response that builds general solutions as a sum of two special
solutions, but the zero-state response does not usually have a simpler form than the general solution. This
expression is more useful in interpreting the solution than as a part of the method for finding the solution.

End of supplement
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