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0. Introduction Although Laplace transforms were defined using an integral containing a param-
eter, the computation of transforms and inverse transforms used a special list of properties. This approach is
generally known as an “operational” approach. Techniques of integration appear only where necessary to
derive the properties that are taken as the basic properties of the transform. Although the properties of the
transform (except for linearity) are as exotic as the rules of calculus, they become easy to use with a little
practice.

Unfortunately, the treatment of Fourier coefficients in the text doesn’t develop a similar list of prop-
erties, relying instead on classical techniques of integration. Each exercise becomes a separate calculation
and results that provide structural hints to the form of the answer are hidden. Since these separate calcula-
tions are frequently tedious, leading to computational mistakes, they are a poor substitute for methods that
emphasize visible properties of correct answers.

There is some concern about the claim that the Fourier series is equal to the function it represents or its
periodic extension. We expect equality to be preserved when we evaluate expressions at particular values
of a variable in the equation. However, Fourier series don’t always converge in this pointwise sense to the
function that they represent. While this type of equality may fail, other properties are easily seen to be
preserved. In particular, the integrals defining the coefficients behave in the expected way, so the function
determines its Fourier series. This allows us to show that the coefficients do tend to zero and the rate at
which they decrease is related to the smoothness of the function. This provides a visual clue to what to
expect from a computation of Fourier coefficients that is useful in detecting serious mistakes. For functions
that are continuous as periodic functions on the whole real line and piecewise differentiable, the series
converges to the function uniformly. Functions arising applications are often this nice, so we may consider
them as being equal to their Fourier series. In the more general case of function that are only piecewise
continuous with jump discontinuities, the behavior of the series is well understood. At a jump, the series
converges to the value exactly in the middle of the jump.

The ability to recover the function from its Fourier series gives an important check on the computations.
For example, one operation that was useful in dealing with Laplace transfors was the shifting theorem for
relating the transforms of f .t/ and f .t � c/. For Fourier series, the same proof may be used, but the
conclusion is more natural: the Fourier series for f .x � c/ is obtained by substituting x � c for x in the
Fourier series for f .x/.

It is also true, to some extent, that term-by-term differentiation of the series corresponds to differentia-
tion of the function. As with Laplace transforms, this is proved using integration by parts, but it is easier to
remember that the series for f 0.x/ is essentially the term by term derivative of the series for f .x/.

Part of the difficulty is that real Fourier series use trigonometric functions, so there are two functions
for each positive index, and the term with index zero needs to be treated differently. The use of complex
exponentials gives a single list of functions indexed by all integers, and the partial sums of the series are
taken to be the sum of terms with index between �n andCn for integers n.

Since the Fourier coefficients are defined by integrating certain expressions, they exist even if the
function being represented is only piecewise continuous. To identify the effect of a jump, it is convenient
to introduce a delta function as part of the derivative of a function with a jump discontinuity. While the
Fourier coefficients of any honest function must tend to 0 as n! 1, the coefficients of the delta function
tend to be of a fixed size. This will allow the Fourier coefficients of functions having a piecewise definition
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with each piece given by a polynomial can be found without explicit calculation of any but the simplest
integrals.

1. Real Fourier series Given a function f .x/ on the interval Œ�p; p�, its Fourier series is
given by
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assures us that the Fourier series of one of these functions is just the single term that is the function itself.
In particular, the Fourier series of a constant function is itself.

Also note that the constant term of the series a0=2 is the average value of f .x/.
Although it is customary to use only the expression defining f .x/ in describing exercises, the result

depends in an essential way on the interval Œ�p; p�. The functions in the Fourier series for this interval
are all periodic with period 2p, so the actual function represented by the series is a periodic extension of
f x to all of R. Different values of p usually lead to different extensions. Once the function is extended
to be periodic, the integrals defining the Fourier coefficients can be computed using any interval of length
2p. The use of a symmetric interval allows some saving in the case of even functions having only a cosine
series or odd functions having only a sine series.

Another consequence of the need to use a periodic extension is that a function for which f .p/ ¤
f .�p/ must be considered as having a jump discontinuity at x D p.

2. Examples Let
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n
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for some a with 0 < a < p. This is an even function, so bn D 0 for all n and
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for n > 0. The exclusion of n D 0 is an essential restriction since the expression for the integral has a
factor of n in its denominator. A separate (easier) computation gives a0 D 2a=p. Since this is a pure
cosine series, the an computed here give the Frequency Spectrum defined in section 12.4 of the textbook.
A special case of this example is Example 3 of that section, illustrated in Figure 12.19.

Let g.x/ D x on the interval Œ�p; p�. Except in the trivial case p D 0, we have g.p/ ¤ g.�p/, so
this function must be considered as having a jump discontinuity at x D p. Note that the location of the
discontinuity depends on p, so the common expression describes different function, with different series,
for different p. This is an odd function, so all an D 0 and
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Details have been omitted, but it is easy to see that our expression for the indefinite integral is correct
(we will describe a method of computing it later). To get the definite integral, we use sinn� D 0 and
cosn� D .�1/n for integer n.

Again, because this is a pure sine series, these coefficients give the Frequency Spectrum.
Note that both of these examples have Fourier coefficients that are a bounded quantity divided by n.

Convergence of such series is often difficult to establish since such series are not absolutely convergent.

3. Complex Fourier series Because the even and odd parts of functions often have signif-
icance in applications, it is sometimes convenient to have two types of term, sines and cosines, appear in
the series. Unfortunately, this means that almost everything will require the discussion of several cases in
proofs. The use of the identity

eix D cos x C i sin x

and its elementary consequences allows a unified approach to the theory at the expense of calculating with
complex numbers. We will see that this only means computing a single complex quantity cn D .an�bni/=2
in place of the two real numbers an and bn, so the difference is mostly only a matter of bookkeeping.
Although we will also require c�n in order to describe the series, we have c�n D .an C bni/=2, so the two
complex numbers c˙n are complex conjugates for every real function f .x/. The resulting series is

f .x/ D

1X
�inf ty

cne
in�x=p

It is the need for this result that justifies the division by 2 and choice of signs in the relation between
the cn and the coefficients an and bn of the real series.

Combining our definitions,
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Although n > 0 was assumed in this calculation, the result is valid for all n, since cos x is an even function
and sin x is an odd function.

The computation of cn using this expression applies to complex functions. If f .x/ D em�i=p for
m ¤ n, then
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since the exponents differ by an integer multiple of 2� (m ¤ n was assumed when we wrote a formula
requiring division by this quantity). When m D n, the integral reduces to the integral of the constant
function 1 over an interval of length 2p divided by the length of the interval. so it is 1. Again, we see
that each basic function, and hence each linear combination of basic functions, has a Fourier series that is
itself.

Another example is the function h.x/ D ex on Œ��; ��. For this function
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A direct computation of the an and bn would be more complicated.
Since it is easy to convert between the real and complex Fourier series, only one needs to be computed

in any example. Theoretical results are typically easier to describe using the complex series, but the real
series is often easier to work with in explicit examples.

For real functions, cn and c�n are complex conjugates. When an and bn are recovered from the
complex series, we have an D cn C c�n, so it is twice the real part of cn. Similarly, bn D i.cn � c�n/,
making it twice the imaginary part of c�n.

4. Scaling Several techniques that are analogs of the operational properties of the Laplace transform
require comparison of the Fourier coefficients of different functions. The notation we acquired from the
textbook contains no mention of the function, so we must invent a notation that will allow us to state results.
We propose to denote the complex Fourier coefficients of f .x/ by Œf �cn, with a similar convention for
other functions, so that those of g.x/ will be Œg�cn.

Suppose we are given a function f on the interval Œ�p; p�, and use it to construct a function g using
the formula g.x/ D f .bx/. For the argument bx of the function f to satisfy �p � bx � p, we must
have �p=b � x � b=p, so g needs to be considered on the interval Œ�p=b; p=b�. Then, on the appropriate
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intervals, using the substitution y D bx, dy D b dx,
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Note that the series for g.x/ is obtained by replacing x by bx in the series for f .x/.

5. A shifting theorem Let functions of period 2p be related by g.x/ D f .x � b/. Then, using
P to denote any interval of length 2p and the substitution u D x � b,
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A consequence of this is that f and g have the same Frequency Spectrum because the cn differ by a
factor of absolute value 1.

Note that the formula relating the cn says that the Fourier series for g.x/ is found by writing x � b in
place of x in the Fourier series for f .x/, as one would expect from the notation that says that a function is
equal to its Fourier series.

6. Delta functions The operational view of a transform is enhanced by enlarging the realm of
objects to which the transform may be applied. We have already seen how both the theory and applications
of the Laplace transform are aided by the invention of ı.x/, defined to be zero except at x D 0 and just
infinite enough at zero that its integral over any interval including zero is 1.

Since Fourier coefficients are defined by integrals like those used to define the Laplace transform, we
have the Fourier series
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In particular, when b D p, 2pcn D e�in� D .�1/n.
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7. Differentiation
We consider a function f that is both piecewise continuous and piecewise differentiable; that is, the

period interval can be written as a union of a finite number of closed intervals such that the function is
differentiable on the interior of each of those intervals. Visually, this says that the graph of the function is
smooth except for a finite number of jumps or corners. The Fourier coefficients of this function will be a
sum of integrals over each of the intervals on which the function is nice. On each of those intervals Œa; b�,
consider the integration by parts formula obtained from the derivative of f .x/e�n�ix=p:Z b
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The complex Fourier coefficients of f 0.x/ are found by adding the terms on the left over all intervals Œa; b�
and dividing by 2p.

The second terms on the right combine in the same way as the terms on the left to give the complex
Fourier coefficients of f .x/multiplied by n�i=p. This factor is exactly the factor expected from term-by-
term differentiation of the Fourier series.

In the first term on the right, each interval contributes the limit of the value of f .x/e�n�ix=p at the
point with a positive sign if it is a right endpoint and a negative sign if it is a left endpoint. When we
consider the sum of all of these terms, there will be a contribution of

e�n�ia=p
�
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f .x/
�

at each endpoint a. This is �e�n�ia=p times the size of the jump at a (zero at points where f is continuous,
even if it is a corner). If this term is moved to the other side of the equation, it can be identified with
the product of 2p with the size of the jump and the Fourier coefficient of ı.x � a/. This agrees with our
interpretation of the delta function as the derivative of a function that is constant except for a jump of unit
size. Thus, provided that the Fourier series of delta functions are introduced to represent the derivative of
the jumps, the Fourier series of f 0 is the term by term derivaive of the Fourier series of f .

In our first example, f .x/ is constant except for a unit jump upward at x D �a and downward at
x D a. Thus, we may consider f 0.x/ D ı.xC a/� ı.x � a/. This is an odd function, so it gives a Fourier
series
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Integrating term-by-term gives the same result as we originally obtained for an when n > 0. The value of
a0 must be calculated separately as before.

In the second example, g0.x/ D 1�2pı.x�p/. This is an even function, so it gives the Fourier series.
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The a0 term is zero because the jump in g.x/ at the end of the interval exactly balances the growth over the
rest of the interval. Indeed, the derivative of any periodic function must have constant term zero. Again,
term-by-term integration gives the previous series for g.x/.

Since two functions that differ by a constant have the same derivative, it must be impossible to deter-
mine Œg�c0 from the Fourier series of g0.x/. A separate computation of the average value of g is required
to find Œg�c0.



Mathematics 421 Essay 2, p. 7

8. Exercises
A. Use linearity and the results of examples in Section 2 of this document to find the Fourier series of

f .x/ D 5x C 3 on the interval Œ��; ��.
B. Consider the following three functions on Œ��; ��, each of which takes the value C1 1/6 of the time,

�1 1/6 of the time, and 0 the remaining 2=3 of the time:

f .x/ D

(
1 0 < x < �=3

�1 ��=3 < x < 0

0 otherwise
; g.x/ D

(
1 �=3 < x < 2�=3

�1 �2�=3 < x < ��=3

0 otherwise
;

h.x/ D

(
1 �=3 < x < 2�=3

�1 ��=3 < x < 0

0 otherwise
:

Use linearity and the results of examples in this document to find the complex Fourier series and the
Frequency Spectrum of each of these functions.

C. Consider the function on Œ�1; 1� defined by

f .x/ D

�
0 �1 < x � 0

x 0 < x � 1
:

This expression appears continuous on Œ�1; 1�, but its periodic extension of period 2 has a discontinuity at
x D 1 since

lim
x!1�

D 1 and lim
x!�1C

D 0

Modify the examples of Section 7 to find the Fourier series of f 0 including a multiple of ı.x � 1/ that must
be the term by term derivative of the Fourier series of f , and use this to determine the series for f .x/ except
for its constant term. Then, evaluate c0 D a0=2 as the average value of f .x/ on the interval Œ�1; 1�. Put
these together to get the whole Fourier series for f .x/.

End of supplement
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