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0. Introduction A second order differential equation has a general solution containing two
parameters. Typically these parameters are the values of the solution and its first derivative at a single
point. Under suitable conditions, the theory predicts that such data leads to a unique solution. However,
some natural questions lead to the value of the function at two different points being specified. In such
questions, the function restricted to the interval between those points is the main object of interest, so
these questions are called boundary value problems. If the equation is linear and homogeneous, and the
given boundary values are zero, then a unique solution could only be the zero function. However, there is
no uniqueness theorem for boundary value problems. Indeed, certain homogeneous equations with zero
boundary values have non-trivial solutions.

1. The main example A typical example is

d2y

dx2
C �y D 0Iy.0/ D 0Iy.L/ D 0

for fixed L and a parameter �. Case I: If � < 0, write � D �˛2. Then, the general solution of the
differential equation is y D ae˛x C be�˛x . The condition at x D 0 requires b D �a, so the solution is
a multiple of sinh x. This function is strictly increasing, so the condition at x D L allows only the zero
function. Case II: If � D 0, the solution is y D a C bx, the condition at x D 0 gives a D 0, and again
the solution is a multiple of the increasing function y D x, and only b D 0 allows y.L/ D 0. Case III: If
� > 0, write � D ˛2. Then, the general solution of the differential equation is y D a cos˛xCb sin˛x, and
the condition at x D 0 gives a D 0. However, this time, if ˛ D n�=L, giving � D n2�2=L2, all multiples
of sin˛x satisfy the condition at x D L.

It is only a coincidence that the sign of � appears significant in this analysis. What is important is the
form of the solution of a second order linear differential equation with constant coefficients. After testing
for solutions of the form e˛x , one distinguishes the cases of real ˛, complex ˛, and repeated roots. These
cases reflect the nature of the solution. The boundary condition at x D 0 selects the multiples of a single
solution for each �, and this solution is tested for satisfying the boundary condition at x D L.

The functions that appear in these solutions are exactly the odd functions on �L � x � L appearing
in half range Fourier series. That is, if the given f .x/ on Œ0; L� is extended to be odd and periodic with
period 2L, the Fourier series of the extended function is identical with the eigenfunction expansion of the
original function f .x/.

Similarly, the functions cos˛x with ˛ D n�=L (including n D 0 in this case) correspond to the
boundary condition y 0.0/ D 0Iy 0.L/ D 0.

2. Eigenfunctions There is something more general than Fourier series involved here. The
boundary condition at each endpoints is allowed to be the requirement that some fixed linear combination
of y and y 0 be zero at that point. For example, the boundary value problem

d2y

dx2
C �y D 0Iy.0/ D 0Iy.L/C y 0.L/ D 0 .1/

has a non-trivial solution of the form sin˛x when sin˛LC ˛ cos˛L D 0. There are still infinitely many
such ˛, but they are characterized by ˛ D � tan˛L — an equation that has one root in each interval of
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the form
�
.k � 1=2/�=L; .k C

1=2/�=L
�
. As before, � D ˛2, but there is no simple expression for ˛. These

functions are of the form sin˛x because we required that y.0/ D 0; a different boundary condition at
x D 0 would change the form of the function. It can be shown by the method used in the first example that
only these positive values of � allow nonzero solutions of the boundary value problem. To take a specific
example, take L D � , so the roots are in intervals of length 1. Here is a graph of y D � tan�x and y D x.

The vertical lines are the asymptotes of y D � tan�x at .k � 1=2/�=L and appear as a feature of
Maple’s graphing engine. The first five roots of x D � tan�x computed by Maple are:

0:7876372942; 1:671605625; 2:6162135853:586552746; 4:568591746:

The corresponding values of � are the squares of these numbers:

0:6203725072; 2:794265366; 6:844573522; 12:86336060; 20:87203054:

The graphs of the first three sin˛x are shown below.

This time, the eigenfunctions do not have a common period, so there is no clear interpretation of the
series outside Œ0; L�, even if the series can be shown to converge.

In these problems, we are considering the effect of the linear operator d2=dx2 on the linear space
of functions defined on the interval Œ0; L� satisfying certain homogeneous conditions at the boundary
points x D 0 and x D L. We identified functions taken into multiples of themselves by the operator. In
vector spaces, such objects were called eigenvectors with the multiplier being called an eigenvalue, and
in these function spaces the usual name is eigenfunction. In finite dimensional vector spaces, operators
were characterized (in most cases) by their eigenvalues and eigenvectors, so that the behavior at a general
vector could be found from the eigenvalues and eigenvectors. We aim for a corresponding result in function
spaces.

The general theory predicts that the eigenfunctions will be orthogonal on Œ0; L�. This allows an ar-
bitrary function f .x/ to be expressed as an infinite linear combination of eigenfunctions with coefficients
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determined by integrating the product of f .x/ with the eigenfunctions. In the case where the eigenfunction
expansion reduces to a variation on the Fourier series, the norms of the eigenfunctions are the same as in
the Fourier series, so the same formulas may be used. It is worth noting that f .x/ need not satisfy the
boundary conditions used to define the eigenfunctions. As in the case of Fourier series, the eigenfunction
expansion will represent an extension of the function with a singularity at the end of defining interval. In
particular, we can take f .x/ D 1 and produce an expansion for the eigenfunctions determined by .1/ with
L D � .

The details are worth showing although you will not be required to do hand computation with the
eigenfunctions defined by .1/. Orthogonality requires the following evaluation with m ¤ n.Z �

0

sin˛mx sin˛nx dx D
1

2

Z �

0

cos.˛mx � ˛nx/ � cos.˛mx C ˛nx/ dx

D
1

2

�
sin.˛mx � ˛nx/

˛m � ˛n
�

sin.˛mx C ˛nx/
˛m C ˛n

��
0

D
1

2

�
sin.˛m� � ˛n�/

˛m � ˛n
�

sin.˛m� C ˛n�/
˛m C ˛n

��
0

To complete the evaluation, we replace ˛m by � tan˛m� and ˛n by � tan˛n� in the denominator, and
use the formula for the sine of a sum or difference in the numerator. This reduces the bracketed expression
to .cos˛m�/.cos˛n�/� .cos˛m�/.cos˛n�/ D 0, as expected. Ifm D n, the calculation is similar except
that cos.˛mx � ˛nx/ D 1, so its integral is � . The other term integrates to

sin 2˛�
2˛

D
sin˛�
˛

cos˛� D cos2 ˛� D
1

1C tan2 ˛�
D

1

1C ˛2
:

This leads to the coefficient of sin˛x being

2.1C ˛2/

1C �.1C ˛2/

Z �

0

f .x/ sin˛x dx

When f .x/ D 1, this reduces to
2.1C ˛2/

1C �.1C ˛2/

1 � cos˛�
˛

:

The general proof of orthogonality is hidden in this calculation; we have just found a different descrip-
tion of a function whose derivative is the quantity integrated when testing orthogonality.

These coefficients were used to graph the sums of the first five terms and the first eight terms of the
eigenfunction expansion of f .x/ D 1. Here are the results.
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Note that the left endpoint has y.0/ D 0 for both curves, but the right endpoint has different values of
y.�/, although y.�/ C y 0.�/ D 0 for both curves. This is expected for this case since each term of the
eigenfunction expansion has y.�/ ¤ 0

These first six coefficients were found to be

1:206263840; 0:1709830454; 0:3173400705; 0:1269152395; 0:1667164509; 0:09334414723:

Computers allow a systematic treatment of these more general problems, and you will use this resource
in applications. However, homework and exams will emphasize problems whose eigenfunctions resemble
Fourier series because they are more familiar and often lead to formulas for the solution.

The properties of the problem that allow a systematic study of its solution are that the second derivative
operator is linear on the space of all smooth functions on Œ0; L�. The differential equation asserts that this
operator takes y to a multiple of itself. As noted earlier in this section, such multiples (which are � for the
negative of the second derivative operator) are called eigenvalues of the operator, and when considering
operators on spaces of functions, we refer to eigenfunctions.

3. Self-adjoint operators In a finite dimensional space, the eigenvalues and eigenvectors of
an operator given by a symmetric matrix have special properties. All eigenvalues are real numbers and
there is an orthogonal basis of eigenvectors. The analog for differential operators on a space of functions
on an interval I is an equation in self-adjoint form

d

dx

�
r.x/

dy

dx

�
C .q.x/C �p.x//y D 0

where p.x/ and r.x/ are positive on I . The presence of the function p.x/ gives a generalization of the
usual eigenvalue problem, and the eigenfunctions will be orthogonal with respect to the inner product

hf; gi D

Z
I

p.x/f .x/g.x/ dx:

The proof of Theorem 12.3(d) in the text shows how one works with this more general setting.
In this expression, p.x/ and r.x/ play special roles: p.x/ is the weight function for the inner product;

the roots of r.x/ are points that may be used as endpoints with no additional restriction on the values of
y and y 0.

4. Integrating factors Although the self-adjoint form looks special, an arbitrary second
order operator can be put in that form simply by multiplying by a suitable function that allows the terms of
order one and two to have the required form. As in other examples of this methods, this function is called
an integrating factor. Indeed, the method of discovery and the expression for this integrating factor are
similar to case of the first order linear equation. Multiplying y 00 C b.x/y 0 by r.x/ gives the derivative of
r.x/y 0 precisely when r 0 D br , so b.x/ must be the derivative of ln r.x/. Thus r is given by integrating
b.x/ and exponentiating the result. On any interval where this can be done, e.g., an interval where b.x/ is
continuous, the result is positive, as required by the general theory.

A similar characterization of the integrating factor can be given starting from any expression a.x/y 00C
b.x/y 0; it is not necessary to divide by a.x/ as a separate step. If the integrating factor is denoted �.x/,
then a.x/�.x/ D r.x/ and b.x/�.x/ D r 0.x/. The equation

�
a.x/�.x/

�0
D b.x/�.x/ simplifies to first

order linear homogeneous equation for �.x/. Such equations are separable, so there is a standard solution
that is easy to derive. Nothing is gained by writing the solution as a formula. Indeed, one loses the ability to
see a shortcut to the solution when following the standard method of solution. Once �.x/ has been found,
r.x/ D a.x/�.x/, and the self-adjoint form becomes visible after the original equation is multiplied by
�.x/.
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5. The Sturm-Liouville Theory
The orthogonality of eigenfunctions with respect to the positive weight function p.x/ proved in The-

orem 12.3(d) allows endpoints where r.x/ D 0 as well as those where a boundary condition must be
prescribed. This allows examples for which the equation is singular at one or both boundary points and
the solution is required to satisfy a suitable condition at that point that limits attention to a one-dimensional
space of functions. The text gives examples arising from Bessel’s equation and Legendre’s equation. The
nature of the boundary condition leads to simplicity of eigenvalues noted in Theorem 12.3(b). The linear
independence of eigenfunctions for different eigenvalues claimed by Theorem 12.3(c) is a general property
that has an easy proof based of a trick: one supposes that a simplest dependence relation has been found;
the operator is applied to it and the result simplified using the fact that the terms are eigenfunctions; these
two dependence relations are then combined to get a simpler non-trivial relation. A deeper study is required
for part (a) of the theorem. Such a study can be found in Hans Sagan, “Boundary and Eigenvalue Prob-
lems in Mathematical Physics”, Dover Publications, NY (my copy has a price of $17.95 on the cover —
Dover aims to publish inexpensive paperback books, many of which were textbooks abandoned by their
original publisher). Although a general proof may be difficult, the verification of the properties is easy in
any particular case.

It is conventional to let the eigenvalue be the � in the equation, so the operator is the negative of the
sum of the other terms, i.e.,

�

�
d

dx

�
r.x/

dy

dx

�
C q.x/y

�
This hides the quantity p.x/, but this is the weight function, so it will appear in the orthogonality relation.
Indeed, this weight function should not be hidden since it identifies the problem as an extended form of the
eigenvalue problem that is considered for symmetric matrices.

6. The parametric Bessel equation The Bessel function of the first kind of order
� � 0, denoted J�.x/, satisfies

x2
d2y

dx2
C x

dy

dx
C .x2 � �2/y D 0

with
lim
x!0

x��J�.x/

equal to a particular finite, nonzero value. The method of Frobenius produces a series solution with this
property. See sections 5.6 through 5.8 of the Math 244 text by Boyce and DiPrima or sections 5.2 and 5.3
of the present textbook for details. A family of eigenfunctions can be found for any fixed nonnegative real
value of �, but the case � D 0 is a good illustration of general properties of these functions.

The singular point at zero is a natural location for one of the boundaries. To select another boundary,
we note that J�.x/ is an oscillatory function, as illustrated by the following graph of J0.x/
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Maple can also produce the list of roots of J�.x/ D 0. For � D 0, the first six values (those visible on
our graph) are

2:404825558; 5:520078110; 8:653727913; 11:79153444; 14:93091771; 18:07106397:

Setting ˛ equal to the successive solutions of J�.x/ D 0 allow x D 1 to be a boundary at which
J�.˛x/ D 0. Thus, the functions J�.˛x/ D 0 with fixed � and boundary conditions requiring that

lim
x!0

x��f .x/ is finite,

and f .1/ D 0 leads to the sequence of functions J�.˛nx/ with fixed � and a sequence of ˛n determined by
the zeros of J�.x/.

It remains to find the differential equation satisfied by the J�.˛x/, to use that equation to character-
ize these as eigenfunctions of some operator, and to show that these functions form a complete basis for
functions satisfying the boundary conditions.

We find an equation satisfied by this sequence of functions and put it in self-adjoint form, but omit the
proof of completeness..

Writing u D ˛x and w D J�.u/, we have

du

dx
D ˛ and u2

d2w

du2
C u

dw

du
C .u2 � �2/w D 0

Now,
dw

dx
D
dw

du

du

dx
D ˛

dw

du

and

x
dw

dx
D ˛x

dw

du
D u

dw

du
:

Similarly,

x2
d2w

dx2
D u2

d2w

du2
:

Thus,

x2
d2w

dx2
C x

dw

dx
C .˛2x2 � �2/w D 0

This equation is known as the parametric Bessel equation.
The integrating factor to put this in self-adjoint form is 1=x, so that form of the equation is

d

dx

�
x
dw

dx

�
C .˛2x �

�2

x
/w D 0;

and the eigenfunctions will be orthogonal on Œ0; 1� with respect to the weight x. That is,Z 1

0

xJ�.˛mx/J�.˛nx/ dx D 0

if m ¤ n. The eigenvalue is � D ˛2.
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As an example, the series for 1 � x2 on the interval Œ0; 1� with f .1/ D 0 was computed. Five terms
were sufficient for the graph of the series to be visually coincide with the graph of the original function.
The first five coefficients, computed by Maple, are:

1:108022262;�0:1397775052; 0:04547647069;�0:02099090194; 0:01163624313

After this, the remaining coefficients are less than 10�2 in absolute value (only 12 coefficients exceed
10�3 in absolute value; only 32 exceed 10�4 in absolute value; 80 exceed 10�5 in absolute value). These
computations used only the definition of the coefficients as a quotient of integrals: Maple is allowed to
use any sufficiently accurate method to evaluate the integrals, but it is not required to use the properties of
Bessel functions used in Definition 12.8 of the textbook. Sophisticated systems like Maple may use slow
numerical methods to save the programmer’s time.

The examples of the Fourier-Bessel expansion of x on Œ0; 3� using Bessel functions of order one given
in the text show a difference in Figure 12.21(a) with five terms because the boundary condition at x D 3

satisfied by all eigenfunctions is not satisfied by the given function. The graph in Figure 12.21(b) shows the
extension of the sum of the first ten terms of the series to a larger interval. The solution outside the given
interval is of questionable significance, but it does illustrate that the extension introduces a singularity into
the extension of the given function.

7. Legendre polynomials The Legendre polynomials satisfy an equation whose self-adjoint
form is

d

dx

�
.1 � x2/

dy

dx

�
C n.nC 1/y D 0

General properties of series solutions about x D 0 show that one solution is a polynomial of degree n.
Furthermore x D ˙1 are singular points of the equation, and the method of Frobenius shows that these
polynomials are the only solutions bounded a these singular points, and they are all nonzero at the boundary
points. Using the Legendre polynomials Pn.x/ as eigenfunctions with eigenvalue n.nC 1/ gives a family
of orthogonal functions on Œ�1; 1�. Because we are working with an interval both of whose endpoints are
singular, the only boundary conditions are that the functions be bounded at the endpoints. Note that the
Pn.x/ with n even contain only even powers of x, so are even functions, and those with n odd contain only
powers of x, so are odd functions.

8. Other orthogonal polynomials Exercises introduce Laguerre’s equation

x
d2y

dx2
C .1 � x/

dy

dx
C ny D 0;

and Hermite’s equation
d2y

dx2
� 2x

dy

dx
C 2ny D 0:

Each of these has a polynomial solution of degree n and may be put in self-adjoint form. We are interested
in these equations for all nonnegative integer values of n and the coefficient of y in these equations is
the eigenvalue. The weight function p.x/ is both the integrating factor (because the zero order term in
the original equation has the form �y), and term that identifies any special points that may be taken as
boundary points with no additional boundary conditions (because the second order term is y 00). Because
p.x/ decreases rapidly at x D C1 for Laguerre’s equation and at both ˙1 for Hermite’s equation, these
points are available as boundary points at which no additional assumptions are required. This hint should
have been provided with the exercises dealing with these polynomials since the requirement of explicit
boundary conditions at other boundary points was not given sufficient emphasis. The significance of these
examples is that they define a natural family of orthogonal polynomials for their weight functions.
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9. How will this be used? Eigenfunction expansions generalize Fourier series and are
determined using similar methods. Indeed, some are variants on Fourier series corresponding to particular
boundary conditions. However, this is not reason enough to introduce them.

The power of eigenfunction expansions lies in their ability to represent all reasonable functions satisfy-
ing certain boundary conditions and to have a predictable behavior when differentiated. This will justify
the method of separation of variables for solving certain partial differential equations. The theory of
partial differential equations emphasizes boundary value problems since there are only a limited class of
physical situations allowing anything like the initial value problems that were used to organize the study of
ordinary differential equations. A good beginning to this study is a consideration of the role of boundary
data in ordinary differential equations.

Initially, we will consider problems on rectangular regions in the plane, and we will give complete
solutions to some classical equations in that context. In order to apply our methods to other regions, the
problems will need to be described in a way that is independent of coordinates, and then introduce a special
coordinate system to that suits region on which we want to solve the equation. The parametric Bessel
functions and Legendre polynomials will play a role in the study of important regions in two and three
dimensions.

End of supplement
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