
Financial Mathematics, 640:495: Black-Scholes Pricing

1. Random Process Models for Asset Prices.

We formalize the definition of a random process model for an asset price
as follows. Let {St; t ≥ 0} denote the price of a risky asset. A random
process model for this price is a characterization of the random nature of the
price process that determines, in principle, the probability IP (A) of any set A
of price history outcomes, and the expectation E[Z] of any random variable
Z determined by the price history. For example, a properly formulated model
will determine probabilities of the sort

IP (a1 < St1 ≤ b1, . . . , an < Stn ≤ bn) ,

for any set of times 0 ≤ t1 < t2 < · · · < tn and intervals (a1, b1], . . . , (an, bn];
or probabilities such as

IP

(
max
[0,T ]

St > a

)
, for any T and a;

and also expectations such as E [C(ST )] or E
[
max[0,T ] St

]
. These are just ex-

amples; the point is the models specifies probabilities of any event depending
on {St; t ≥ 0}.

Example. The Black-Scholes price model introduced in previous lectures is

St = S0 exp{µt+ σBt −
σ2

2
t},

where B represents a standard Brownian motion. This model shall be de-
noted BS(µ, σ2). The definition of Brownian motion fully determines how
to compute probabilities of any events concerning the price process, or the
expectations of any values depending on the price process. We give some
examples as practice in working with Brownian motion and using its prop-
erties.

1. Consider a call option on {St; t ≥ 0} at expiration T and strike X.
What is the probability that the option expires in the money?
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Solution: The problem asks for IP (ST > X). This is

IP

(
(µ−σ

2

2
)T+σBT > ln(X/S0)

)
= IP

(
BT

σ
√
T
>

ln(X/S0)+(σ
2

2
− µ)T

σ
√
T

)

= 1−N

(
ln(X/S0)+(σ

2

2
−µ)T

σ
√
T

)

= N

(
−

ln(X/S0)+(σ
2

2
−µ)T

σ
√
T

)

= N

(
ln(S0/X)+(µ− σ2

2
)T

σ
√
T

)
,

since BT/(σ
√
T ) is an N(0, 1) random variable.

2. Find the expected pay-off of the call option of the previous example,
but at a general expiration date T .

Solution: This problem asks for E
[
(ST −X)+

]
.

Note that, as in problem 1, ST > X if and only if

σBT > ln(X/S0)+(
σ2

2
−µ)T,

which occurs if and only if

BT√
T
>

ln(X/S0)+(σ
2

2
− µ)T

σ
√
T

. (1)

Let Z = BT/
√
T , and let

d2 = −
ln(X/S0)+(σ

2

2
− µ)T

σ
√
T

=
ln(S0/X)+(µ− σ2

2
)T

σ
√
T

.

Hence (1) is the same as Z > −d2.

Notice that ST = S0 exp{(µ− σ2

2
)T + σ

√
TZ}. Therefore, because Z is

N(0, 1)

E
[
(ST −X)+

]
= E

[(
S0e

(µ−σ
2

2
)T+σ

√
TZ −X

)+
]
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=

∫ ∞
−∞

(
S0e

(µ−σ
2

2
)T+σ

√
Tz −X

)+ e−z
2/2 dz√
2π

=

∫ ∞
−d2

(
S0e

(µ−σ
2

2
)T+σ

√
TZ −X

) e−z2/2 dz√
2π

= S0e
µT

∫ ∞
−d2

e−(z−σ
√
t)2/2 dz√

2π
−X

∫ ∞
−d2

e−z
2/2 dz√
2π

Now, ∫ ∞
−d2

e−z
2/2 dz√
2π

= 1−N(−d2) = N(d2).

Also, by the change of variable w = z+σ
√
T ,∫ ∞

−d2

e−(z−σ
√
t)2/2 dz√

2π
=

∫ ∞
−d2−σ

√
T

e−z
2/2 dz√
2π

= N(d2 + σ
√
T ).

In conclusion,

E
[
(ST −X)+

]
= S0e

µTN(d1)−XN(d2) (2)

where

d2 =
ln(S0/X)+(µ− σ2

2
)T

σ
√
T

, d1 = d2+σ
√
T =

ln(S0/X)+(µ+ σ2

2
)T

σ
√
T

.

(3)

3. We stated in a previous lecture that with probability 1,

lim
n→∞

n∑
1

(
Bkt/2n −B(k−1)t/2n

)2
= t

with probability 1. We write this as

IP (quadratic variation of B on [0, t] equals t) = 1 (4)

Assuming the Samuelson model BS(µ, σ), lnSt = lnS0 + σBt+(µ−
(σ2/2))t and one can thus derive

IP (quadratic variation of lnS on [0, t] equals σ2t) = 1 (5)
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2. Equivalent models; Black-Scholes pricing framework. Suppose
Alice has proposed model, Model I, for an asset price, and let IP1 (A) denote
probability of an event A computed under her model. Suppose Bob proposes
a different model, Model II, for the same asset price, and let probabilities
for this model be denoted IP2 (A). Model I and Model II are said to be
equivalent, written IP1 ∼ IP2 if

IP1(A) > 0 if and only if IP2(A) > 0. (6)

In words, Alice and Bob have equivalent models if they agree on which events
have positive probability and which have zero probability.

In general, if Alice and Bob do not believe in equivalent models they
will not be able to agree on a fair (no-arbitrage) price of an option. Alice,
in determining what price she would be willing to buy or sell a derivative
contract, will ask what amount of money she will need to hedge the position.
This will depend on which outcomes she deems have positive probability.
If Bob has a different idea of what outcomes have positive probability, the
amount he thinks he needs to hedge may be different.

Example. The Black-Sholes models BS(µ, σ2
1) and BS(µ, σ2) are not equiv-

alent unless σ2
1 = σ2

2. This follows because of the third example in section 1
of this lecture. Under BS(µ, σ2

1)

IP (quadratic variation of lnS on [0, t] equals σ2
1t) = 1, (7)

but under BS(µ, σ2
2) this event has probability zero because the quadratic

variation over [0, t] is σ2
2t instead. �

Black-Scholes models with different volatilities are not equivalent, but for
drifts we have the following result.

Theorem 1 For any drifts µ1 and µ2 and a single volatility σ2, BS(µ1, σ
2)

and BS(µ2, σ
2) are equivalent.

This theorem is beyond our means to prove; in fact it relates to very
deep facts about Brownian motion. But perhaps it should not be surprising,
because a simple, deterministic transformation turns a BS(µ1, σ2) model into
a BS(µ2, σ

2) model. Indeed, if St = S0 exp{(µ1 − (σ2/2))t + σBt} follows a
BS(µ1, σ

2) model, then e(µ2−µ1)tSt = S0 exp{(µ2 − (σ2/2))t+ σBt} follows a
BS(µ2, σ

2) model.
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Definition. We will say that we are pricing in the Black-Scholes framework
or doing Black-Scholes pricing if we assume a Black-Scholes model BS(µ, σ2)
as a reference model for the asset price. This means that all market partici-
pants have models equivalent to BS(µ, σ2), that is, they agree with BS(µ, σ2)
on which events have probability zero and which have positive probability.

3. Risk-neutral pricing strategy. The pricing philosophy we use gener-
alizes pricing for the binomial tree model. Suppose we are given a risk-free
interest rate and a reference model for an asset price {St; t ≥ 0}, assigning
probabilities IP (A) to market history events A. We seek a model ĨP satisfy-
ing: (a) ĨP is equivalent to IP , and (b), assuming model ĨP the discounted
price process {e−rtSt; t ≥ 0} is a martingale (relative to its own past). The
measure ĨP in this context is called the equivalent risk-neutral measure. Then,
the price V0 of a derivative with random pay-off VT at time T is

V0 = e−rT Ẽ [VT ] , (8)

where Ẽ represents expectation using p̃. More generally, the price at time t,
0 < t < T , is the conditional expectation,

Vt = e−r(T−t)Ẽ [VT | Su, u ≤ t] , (9)

For this formula to give us an unambiguous answer, we would like to have a
situation in which the equivalent risk-neutral measure is unique.

In the binomial tree model the formula (9) was arrived at by no-arbitrage
pricing. In hindsight the reasoning can be summarized as follows. Given a
trading strategy 4 and an initial endowment P0, let Πt be the value at time
t of the portfolio which starts with P0 and uses strategy 4. The discounted
value e−rtΠt can make a gain or a profit only by trading on the fluctuations
of the discounted asset price e−rtSt; this is intuitively clear because by dis-
counted we remove any gains from investments at the risk free rate. The
profit from trading on the fluctuations of a martingale is still a martingale;
this is the principle that one cannot by trading turn a fair game into a favor-
able or unfavorable game. Therefore, e−rtΠt must be a martingale assuming
the risk-neutral equivalent model. This implies

e−rtΠt = Ẽ
[
e−rTΠT | Su, u ≤ t

]
,

or equivalently
Πt = e−r(T−t)Ẽ [ΠT | Su, u ≤ t] (10)
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Now suppose that we have a trading strategy so that ΠT = VT , that is, that
duplicates the derivative payoff. Then Πt is the capital one needs at time t to
duplicate VT and so, if there is to be no arbitrage the price of the derivative
at time t should be Vt = Πt. Substituting Vt = Πt and VT = ΠT into (10)
gives the pricing formula (9).

4. Black-Scholes pricing and the Black-Scholes formula for a call
option.

Now we are ready to set up pricing in the Black-Scholes model. Recall
from a previous lecture that if B is a standard Brownian motion then

exp{σBt −
σ2

2
t} is a martingale. (11)

Now suppose the reference model for an underlying asset is the Black-
Scholes model BS(µ, σ2), where µ and σ2 are given. Let r be the risk-free
interest rate, as usual. The initial price S0 is given an known also. We claim
that BS(r, σ2) is an equivalent risk-neutral model. This is easy. We know it
is equivalent by Theorem 1 stated above. It is risk-neutral because

e−rtSt = exp{−rt} exp{(r − σ2

2
)t+ σBt} = exp{σBt −

σ2

2
t},

and we know from (11) that this is a martingale. It is a fact that we cannot
prove in this course, that BS(r, σ2) is the unique risk-neutral model equiva-
lent to BS(µ, σ2).

According to section 3 of this lecture, if VT represents the payoff of any
derivative written on the underlying asset, its price at time t is

Vt = e−r(T−t)Ẽ [VT | Su, u ≤ t] , (12)

where ĨP denotes expectation assuming S follows the B(r, σ2) model.

At time t = 0, there is nothing to condition on and V0 is given by (8) using
the BS(r, σ2) model. Thus

V0 = e−rT Ẽ [VT ] , (13)

Example. The Black-Scholes formula for the price of a call option.
Consider a call option on an underlying asset with expiration T and strike
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X. Assume the the Black-Scholes model with volatility σ2 for the asset price
process {St; t ≥ 0}. Let r be the risk-free interest rate. The payoff of the
option is VT = (St −X)+. Hence, the price of the call at time 0 is given by
(13):

V0 = Ẽ[
(
S0 exp{(r − (σ2/2))T + σBT} −X)+

]
.

But we did this above when r is instead a general µ and gave the answer
in (2) and (3). Thus, replacing µ there by r, we derive the Black-Scholes
formula for the price of a call option.

V0 = S0e
µTN(d1(r, σ2, T ))−XN(d2(r, σ2, T )) (14)

where

d2(r, σ2, T ) =
ln(S0/X)+(r− σ2

2
)T

σ
√
T

d1(r, σ2, T ) = d2(T )+σ
√
T =

ln(S0/X)+(r+ σ2

2
)T

σ
√
T

. (15)

What about the price at an intermediate time t. We use that

ST = St exp{(r − (σ2/2))(T − t) + σ(BT −Bt)},

and the familiar fact that the increment BT − Bt is independent of the
price history {Su; , u ≤ t} up to time t. Therefore, the problem of pricing an
option at time t with current price St, when the option expires at T , is like
the problem of pricing it from time 0, but with S0 replaced by St and T , by
the new time to expiration T+t. Hence we have

Vt = e−r(T−t)Ẽ

[(
Ste

(r−(σ2/2))(T−t)+σ(BT−Bt) −X
)+

| Su, u ≤ t

]
= StN

(
d1(r, σ2, T−t)

)
− e−r(T−t)XN

(
d1(r, σ2, T−t)

)
. (16)

To see this more formally, note that, because BT − Bt is independent of
{Su; , u ≤ t}, because (BT−Bt)/

√
T−t is N(0, 1), and because St is known if

{Su; , u ≤ t} is known, the familiar rules of calculating expectations give us,

Vt =

∫ ∞
−∞

(Ste
(r−σ

2

2
)(T−t)+σ(T−t)z −X)+ e

−z2/2 dz√
2π

.

Then we just apply the calculations leading to (refeq2) and (3), but with T
replaced by T−t and S0 by St. This gives (16).
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