Syllabus for the Oral Qualifying Exam

Martin Köberl

May 2, 2016

Committee: Grigor Sargsyan, Gregory Cherlin, Richard Lyons, Simon Thomas

1 Set Theory

1.1 Basic Set Theory

- Suslin's Problem, Aronszajn Trees
- $\diamondsuit \Rightarrow \exists$ Suslin tree; $\mathsf{MA} + \neg \mathsf{CH} \Rightarrow \not\exists$ Suslin tree
- $L, \diamondsuit \text{ in } L$
- Shoenfield's Absoluteness Theorem

1.2 Forcing

- Forcing basics and forcing theorems
- CH, ¬CH, ♦
- Product Forcing, Easton's Theorem
- Iterated Forcing, MA + ¬CH
- Consequences of MA, Almost disjoint forcing
- Formulation of Solovay's Theorem, Proof for PSP and DC

1.3 Inner Model Theory

- L[U], $L[U] \models \mathsf{CH}$, Δ^1_3 -wellorder of the reals
- Strong, superstrong, Woodin cardinals
- Extenders
- Iteration Trees
- Woodin's Genericity Iteration
- κ measurable $\Rightarrow \Pi_1^1$ -Determinacy

2 Model Theory

- Compactness, Löwenheim-Skolem Theorem, Tarski-Vaught Test
- Quantifier Elimination
- \bullet $\aleph_0\text{-Categoricity},$ Oligomorphic automorphism group
- Fraïssé Theory
- Ultrapowers
- Atomic, prime, homogeneous, saturated models
- Omitting types
- Order indiscernibles: Existence, Stability ⇒ true indiscernibles
- Morley Rank, Morley Degree
- κ -categoricity $\Rightarrow \aleph_0$ -stability
- \aleph_0 -stability \Leftrightarrow totally transcendental