Oral Qualifying Exam Syllabus

Katie McKeon

December 8, 2015

Committee: Alex Kontorovich (chair), Henryk Iwaniec, Stephen Miller, Jerrold Tunnell

1. Modular Forms

- (a) The Modular Group
 - i. $SL(2,\mathbb{Z})$ and Congruence Subgroups
 - ii. Fundamental Domains for $SL(2,\mathbb{Z})$ and congruence subgroups
 - iii. Cusps and Elliptic Points
 - iv. The invariant measure of \mathcal{H} under $SL(2,\mathbb{R})$.
- (b) Modular forms
 - i. Modular and cusp forms
 - ii. Fourier expansions
 - iii. The dimensions of $M_k(\Gamma(1))$ and $S_k(\Gamma(1))$
 - iv. Eisenstein Series, the Dedekind η function, Δ , and the Jacobi triple product formula
 - v. The Petersson inner product on $S_k(\Gamma(1))$.
 - vi. The L-functions for modular form and functional equations
- (c) Hecke Operators
 - i. The slash and Hecke operators on holomorphic functions
 - ii. Coset representatives for $SL(2,\mathbb{Z})\backslash M_n(\mathbb{Z})$
 - iii. Commutativity and self-adjointness of the Hecke operators
 - iv. Hecke eigenforms and Fourier coefficients
 - v. Euler products for Hecke eigenforms
- (d) The Rankin-Selberg Method
 - i. The nonholomorphic Eisenstein series
 - ii. Analytic continuations and Euler products for the product of two modular forms

2. Ergodic Theory

- (a) Transformations on probability spaces
 - i. Measure preserving transformations
 - ii. Invertible Extensions
 - iii. The unitary operator and its spectral properties
 - iv. Poincaré Recurrence
 - v. Strong mixing
 - vi. Weak mixing and equivalent definitions
 - vii. Ergodic transformations and equivalent definitions
 - viii. Invariant measures for continuous maps
 - ix. Unique Ergodicity
 - x. Weyl's equidistribution criterion
 - xi. An ergodic proof of Weyl's theorem on equidistribution of polynomial sequences
- (b) Ergodic Theorems
 - i. Mean ergodic theorem

- ii. Maximal inequality and maximal ergodic theorem
- iii. Birkhoff's pointwise ergodic theorem
- (c) Continued Fractions
 - i. The Gauss map and Gauss measure
 - ii. Consequences of ergodicity of the Gauss map
 - iii. Badly approximable numbers
- (d) Geodesic Flow
 - i. Hyperbolic geometry
 - ii. Geodesic and Horocycle Flow
 - iii. Ergodicity of geodesic flow

3. Analytic Number Theory

- (a) Poisson summation
- (b) The Mellin transform and the Γ function
- (c) The Phragmen-Lindelof principle and convexity bounds
- (d) The Riemann ζ function and Dirichlet L-functions
 - i. Euler products
 - ii. θ functions
 - iii. Analytic continuation and functional equations
- (e) Dirichlet's theorem on primes in arithmetic progressions.
- (f) The Prime Number Theorem.