Oral Qualifying Exam Syllabus

Matthew Welsh April 2016

Analytic Number Theory

- $\zeta(s)$ and L(s, χ)
 - Functional equation, approximate functional equation
 - o Zero-free region, PNT
- Primes in arithmetic progressions
 - Siegel-Walfisz theorem
 - o Bombieri-Vinogradov theorem
- Sieve methods
 - Λ² sieve, Brun-Titchmarsh estimate
- Bilinear Techniques
 - Statements of the additive, multiplicative large sieve inequalities
- Exponential sums
 - Weyl's method, subconvexity for $\zeta(s)$
- Dirichlet polynomials
 - o Integral, discrete mean value estimates
 - \circ Large values, $\zeta(s)$ zero-density estimates

Spectral Methods of Automorphic Forms

- Harmonic analysis on H
 - Classification of hyperbolic motions
 - Hyperbolic Laplacian, Whittaker function
- Fuchsian groups and automorphic forms
 - Fundamental domains
 - Double coset decomposition, Kloosterman sums
 - o Eisenstein series, cusp forms
- Statement of the spectral theorem
 - Discrete part
 - Continuous part
 - Analytic continuation, functional equation of Eisenstein series
 - Residual spectrum, Eisenstein transform
- Statement of Selberg's trace formula, Weyl's law

Geometry of Numbers

- Minkowski theorems
- Reduction
 - Definite quadratic forms
 - o Indefinite binary quadratic forms, Pell's equation

- o Binary cubic forms
- Applications
 - o Representations of integers by quadratic forms
 - o Dirichlet's theorem on diophantine approximation

References

- 1. JWS Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, 1959.
- 2. H Iwaniec, Spectral Methods of Automorphic Forms, 2nd edition, AMS and RMI, 2002.
- 3. H Iwaniec and E Kowalski, *Analytic Number Theory*, AMS, 2004.