Oral Qualifying Exam Syllabus Brian Nakamura

Committee: Doron Zeilberger (chair)
József Beck
Vladimir Retakh
Michael Saks

Enumerative Combinatorics

- 1. Basic Enumeration: counting arguments, recurrence relations, inclusion-exclusion, pigeonhole principle, Stirling numbers, Bell numbers, Catalan numbers, Eulerian numbers, Fibonacci numbers
- Generating Functions: formal power series, ordinary generating functions, exponential generating functions, Dirichlet series, fundamental theorem of exponential generating functions, Lagrange inversion
- Partially Ordered Sets: chains/anti-chains, graded/ranked posets,
 Hasse diagrams, lattices, distributed lattices, geometric lattices, Birkhoff
 Representation Theorem, Dilworth's Theorem, Möbius inversion, Weisner's Theorem
- 4. Discrete Probability: basic discrete probability (mean, variance, moments), probability generating functions, Penney-Ante games
- 5. Experimental Math and Applications: applications of Goulden-Jackson Cluster Method (such as counting words of fixed length that avoid a set of bad subwords), Standard Young Tableaux (and enumerating them), plane and solid partitions, generating functions enumerating plane and solid partitions, bond and site percolation of a graph, computing percolation probabilities in graphs and matrices

References:

Graham, Knuth, and Patashnik, Concrete Mathematics
Noonan and Zeilberger, The Goulden-Jackson Cluster Method: Extensions,
Applications, and Implementations
Stanley, Enumerative Combinatorics, Vol. 1

Wilf, Generatingfunctionology Zeilberger, Enumerative and Algebraic Combinatorics

Graph Theory

- 1. Basic graph theory: basic graph definitions (trees, bipartite graphs, paths and cycles)
- 2. Matching: Hall's Theorem, König's Theorem, Tutte's Theorem
- 3. Connectivity: Menger's Theorem, Max Flow/Min Cut Theorem
- 4. Planarity: Euler's theorem, Kuratowski's theorem, Wagner's theorem
- Hamiltonicity: Dirac's Theorem, Ore's Theorem, Bondy-Chvátal Theorem
- 6. Coloring: chromatic and edge-chromatic numbers, Brook's Theorem, Vizing's Theorem, chromatic polynomials, Perfect Graph Theorem
- 7. Extremal: Turán's Theorem, Erdős-Stone Theorem, statement and applications of Szemerédi's Regularity Lemma

References:

Diestel, Graph Theory

Hypergeometric Functions

- Definitions: basic definition of hypergeometric series for single variable and multivariable, definition in terms of differential equations for single variable
- 2. Summing: formulas for the sum of a hypergeometric function when x = 1 (Explain using Euler integrals, combinatorics, and WZ theory)
- 3. Other: q-analogues, difference analogues, A-systems and connections with geometry

References:

Notes from Retakh's course MATH 640:509 - Hypergeometric Functions