Topics for oral qualifying exam for Bud Coulson Fall, 2012

Major topic: Vertex operator algebras

- 1. Definitions and properties.
 - (a) Formal calculus.
 - (b) The notions of vertex algebra and of vertex operator algebra, and basic properties.
 - (c) Rationality, commutativity and associativity; equivalence of various formulations, including "weak" formulations.
- 2. Representations of vertex (operator) algebras.
 - (a) The notion of module and basic properties.
 - (b) Weak vertex operators.
 - (c) The structure of the canonical weak vertex algebra. Local subalgebras and vertex subalgebras of the canonical weak vertex algebra.
 - (d) The equivalence between modules and representations.
 - (e) General construction theorems for vertex (operator) algebras and modules.
- 3. Examples of vertex (operator) algebras and modules.
 - (a) Vertex (operator) algebras and modules based on the Virasoro algebra.
 - (b) Vertex (operator) algebras and modules based on affine Lie algebras.
 - (c) Vertex (operator) algebras and modules based on Heisenberg Lie algebras.
 - (d) Vertex (operator) algebras and modules on even lattices.
 - (e) Vertex operator construction of the affine Lie algebras corresponding to A_n , D_n and E_n .

- 4. Affine Lie algebras
 - (a) Classification of affine Lie algebras, twisted and untwisted.
 - (b) Explicit realization of affine Lie algebras.
 - (c) Affine root systems and Weyl groups.
- 5. The fundamentals of logarithmic tensor product theory for generalized modules for a conformal vertex algebra.
 - (a) The notions of conformal and Möbius vertex algebra.
 - (b) The notions of module and of generalized module.
 - (c) Opposite vertex operators, and contragredient modules and generalized modules.
 - (d) The notions of intertwining operator, logarithmic intertwining operator and fusion rule; basic properties.
 - (e) Logarithmic formal calculus.
 - (f) The notion of P(z)-tensor product of generalized modules.

Minor topic: Descriptive Set Theory

- 1. Polish and Standard Borel Spaces
 - (a) Basic definitions and examples.
 - (b) The Borel Isomorphism Theorem.
 - (c) Borel-generated topologies and the Ramsey-Mackey Theorem.
 - (d) Sequential trees. Systems of sets and their associated maps. Souslin, Lusin and Cantor schemes. The Souslin operation A.

- 2. The Borel and Projective Hierarchies
 - (a) Basic definitions, facts including closure properties.
 - (b) Existence of universal sets for each. Non-collapsing of each.
 - (c) Every uncountable Polish space contains an analytic set that is not Borel.
 - (d) Equivalence of various definitions of analytic sets.
 - (e) Every coanalytic set is a union of \aleph_1 Borel sets.
 - (f) Definitions of Σ_1^1 -complete, Π_1^1 -complete. WF is Π_1^1 -complete.
 - (g) Regularity properties: Every analytic subset of a Polish space is measurable, has the Baire property, and has the perfect set property.
 - (h) Souslin's Theorem and the First Separation Theorem for analytic sets.

References

- [FHL] I. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Memoirs Amer. Math. Soc. 104 (1993).
- [FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, 1988.
- [HLZ] Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, Parts I-VIII, to appear.
- [H] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Second Printing, Revised, Springer-Verlag, 1972.
- [LL] J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and Their Representations, Progress in Math., Vol. 227, Birkhäuser, Boston, 2003.
- [LM] J. Lepowsky and G. McCollum, Elementary Lie algebra theory, Yale Univ. Lecture Note Series, 1974, 138 pgs.; corrected, 1982, Rutgers Univ.
- [M] Y.N. Moschovakis, Descriptive Set Theory: Second Edition, Mathematical Surveys and Monographs, Volume 155, 2009
- [S] S.M. Srivastava, A Course on Borel Sets, Springer-Verlag, 1998.