Topics for oral qualifying exam for Corina Calinescu Spring, 2003

Major topic: Vertex operator algebras

- 1. Definitions and properties.
 - (a) Formal calculus.
 - (b) The notions of vertex algebra and of vertex operator algebra, and basic properties.
 - (c) Rationality, commutativity and associativity; equivalence of various formulations, including "weak" formulations.
- 2. Representations of vertex (operator) algebras.
 - (a) The notion of module and basic properties.
 - (b) Weak vertex operators.
 - (c) The structure of the canonical weak vertex algebra. Local subalgebras and vertex subalgebras of the canonical weak vertex algebra.
 - (d) The equivalence between modules and representations.
 - (e) General construction theorems for vertex (operator) algebras and modules.
- 3. Examples of vertex (operator) algebras and modules.
 - (a) Vertex (operator) algebras and modules based on the Virasoro algebra.
 - (b) Vertex (operator) algebras and modules based on affine Lie algebras.
 - (c) Vertex (operator) algebras and modules based on Heisenberg Lie algebras.
 - (d) Vertex (operator) algebras and modules on even lattices.
 - (e) Classification of the irreducible modules for the simple vertex operator algebras associated to standard modules.
- 4. The notions of intertwining operator and fusion rule, basic properties.

Minor topic: Kac-Moody algebras

- 1. Definitions and properties.
 - (a) Triangular and root space decompositions.
 - (b) The invariant bilinear form and the generalized Casimir element.
 - (c) Integrable representations of Kac-Moody algebras and the Weyl group.
- 2. A classification of generalized Cartan matrices.
- 3. Real and imaginary roots.
 - (a) Definitions and properties.
 - (b) An explicit description of the root system of a Kac-Moody algebra.
- 4. Affine algebras.
 - (a) The normalized invariant form, the root system, and the Weyl group.
 - (b) Affine algebras as central extensions of loop algebras.
- 5. The representation theory of Kac-Moody algebras.
 - (a) The category O. Highest-weight modules and Verma modules.
 - (b) The irreducibility and complete reducibility in O.
 - (c) Formal characters of modules from O.
 - (d) Integrable highest-weight modules over Kac-Moody algebras. The character formula, the denominator formula and the multiplicity formula.
 - (e) The denominator formula for $\widehat{sl_2(C)}$. The Jacobi triple product identity.
 - (f) On the defining relations for a symmetrizable Kac-Moody algebra.

References

- [FHL] I. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Memoirs Amer. Math. Soc. 104 (1993).
- [FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, 1988.
- [K] V. Kac, Infinite dimensional Lie algebras, third edition, Cambridge University Press, 1990.
- [LL] J. Lepowsky and H. Li, Introduction to vertex operator algebras and their representations, to appear.
- [L] H. Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure and Applied Algebra 109 (1996), 143-195.