Syllabus for Oral Exam

WANG, Yu

Major topic: Partial Differential Equation

- 1. Four Important Linear PDEs
 - 1.1Transport Equation
 - 1.2Laplace's Equation

Fundamental solution

Mean-value formula

Properties of harmonic functions (Maximum principles, smoothness)

Green's function

1.3Heat Equation

Fundamental solution

Mean-value formula

Maximal principle (for bounded domain; for Cauchy problem)

Energy methods (for uniqueness for initial/boundary-value problem; for backward uniqueness)

1.4Wave Equation

d'Alembert's formula

Solution by spherical means

Energy methods (for uniqueness for wave equation)

1.5Schrodinger Equation

Derivation of its fundamental solution

2. Sobolev Spaces

- 2.1Holder spaces
- 2.2Sobolev spaces

Weak derivatives, definition of Sobolev spaces, elementary properties

- 2.3approximation
- 2.4extentions
- 2.5Sobolev inequalities

Gagliardo-Nirenberg-Sobolev inequality

Morrey's inequality

General Sobolev inequality

- 2.6Compactness
- 3. More General Second-Order Elliptic Equations
 - 3.1Existence of weak solutions

Definition of weak solution

Lax-Milgram Thm

Energy estimates

Fredholm alternatives

3.2Regularity

Interior regularity, boundary regularity

3.3Maximum principles

Weak maximum principle

Strong maximum principle

Minor topic: Numerical Solution for PDEs

1. Approximation of function by polynomial and piecewise polynomial

Newton interpolation

Lagrange interpolation

Application to numerical differentiation and numerical quadrature

Error Estimates

- Finite Difference Method for elliptic PDEs and heat PDEs discrete maximum principle discrete Green's function error estimates
- Finite Element Methods for PDEs triangulation of domain barycentric coordinates

variational formulations of elliptic PDE (standard Galerkin; mixed finite element methods; nonconforming methods)

error estimates in H^1 and L^2 solution of the discrete equations