Topics for oral qualifying exam for Francesco Fiordalisi Spring, 2011

Major topic: Vertex operator algebras

- 1. Definitions and properties.
 - (a) Formal calculus.
 - (b) The notions of vertex algebra and of vertex operator algebra, and basic properties.
 - (c) Rationality, commutativity and associativity; equivalence of various formulations, including "weak" formulations.
- 2. Representations of vertex (operator) algebras.
 - (a) The notion of module and basic properties.
 - (b) Weak vertex operators.
 - (c) The structure of the canonical weak vertex algebra. Local subalgebras and vertex subalgebras of the canonical weak vertex algebra.
 - (d) The equivalence between modules and representations.
 - (e) General construction theorems for vertex (operator) algebras and modules.
- 3. Examples of vertex (operator) algebras and modules.
 - (a) Vertex (operator) algebras and modules based on the Virasoro algebra.
 - (b) Vertex (operator) algebras and modules based on affine Lie algebras.
 - (c) Vertex (operator) algebras and modules based on Heisenberg Lie algebras.
 - (d) Vertex (operator) algebras and modules on even lattices.
 - (e) Vertex operator construction of the affine Lie algebras corresponding to A_n , D_n and E_n .
- 4. Partition identities, Rogers-Ramanujan recursion.
 - (a) Elementary theory of partitions; Euler's partition identity, Jacobi triple product identity, Euler's pentagonal number theorem.

- (b) Rogers-Ramanujan identities and Gordon's generalization; Andrews-Gordon identity.
- (c) Vertex operator construction of $\widehat{sl_2(\mathbb{C})}$ standard modules, principal subspaces. Level 1 case, Rogers-Ramanujan recursion; higher levels and Rogers-Selberg recursion.

Minor topic: Kac-Moody algebras

- 1. Poincaré-Birkhoff-Witt theorem.
- 2. Definitions and properties.
 - (a) Root space decompositions.
 - (b) The invariant bilinear form and the generalized Casimir element.
 - (c) The Weyl group
 - (d) Real and imaginary roots, definitions and properties.
- 3. Affine Lie algebras
 - (a) Affine Lie algebras as central extensions of loop algebras
 - (b) Classification of affine Lie algebras, twisted and untwisted
 - (c) Explicit description of root system and Weyl group
- 4. Representation theory of Kac-Moody algebras
 - (a) Integrable representations of Kac-Moody algebras
 - (b) The category O, highest-weight modules and Verma modules
 - (c) Formal characters of modules in O
 - (d) Integrable highest-weight modules over Kac-Moody algebras, the character formula, the numerator formula and the denominator formula
 - (e) Specializations of the character
 - (f) Explicit description for affine Lie algebras

References

- [A] G. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol.2, Addison-Wesley, 1976
- [CLM] S. Capparelli, J. Lepowsky, and A. Milas, The Rogers-Ramanujan recursion and intertwining operators, Commun. Contemp. Math. 5 (2003)
- [CLM2] S. Capparelli, J. Lepowsky, and A. Milas, The Rogers-Selberg recursions, The Gordon-Andrews identities and intertwining operators, The Ramanujan Journal 12 (2006), 379-397.
- [FL] A. Feingold, J Lepowsky, The Weyl-Kac Character Formula and Power Series Identities, Adv. in Math. 29 (1978)
- [FHL] I. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Memoirs Amer. Math. Soc. 104 (1993), 947-966.
- [FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, 1988.
- [LL] J. Lepowsky and H. Li, Introduction to vertex operator algebras and their representations, Birkhäuser, 2004.
- [L] J. Lepowsky, Lectures on Kac-Moody Lie algebras, Université Paris VI, 1978.