Oral Qual Syllabus

Howard Nuer

March 2, 2012

1 Algebraic Geometry

- Sheaves: Definition, presheaves and associated sheaves, morphisms, stalks, pull-back and push-forward
- Schemes: Affine schemes, Proj, structure sheaf, scheme associated to a variety
- 3. First properties of schemes: Reduced, integral, Noetherian schemes, morphisms of finite type, finite morphisms, closed immersions, dimension, fibre products
- 4. **Separated and proper morphisms**: Definition of separated and proper morphisms, valuative criteria, projective morphisms, reduced structure of closed subsets, scheme-theoretic image, constructable sets
- 5. Coherent and quasi-coherent sheaves: Definition of \mathcal{O}_X -modules, quasi-coherent and coherent sheaves, constructions on \mathcal{O}_X -modules, invertible sheaves, vector bundles
- Divisors: Weil divisors, Cartier divisors, equivalence for locally factorial schemes, invertible sheaves
- 7. **Projective morphisms**: Criteria and characterization of projective morphisms, ample and very ample line bundles, blowups
- 8. Differentials: Derivations, module of relative differential forms, sheaves of differentials and nonsingularity, tangent sheaf, canonical sheaf, geometric genus

2 Cohomological methods in algebraic geometry

- 1. Derived functors: Abelian categories, complexes, derived functors, δ functors
- 2. Cohomology of sheaves: The category of sheaves of \mathcal{O}_X -modules has enough injectives, some basic vanishing theorems
- Cohomology of a Noetherian Affine Scheme: vanishing of higher cohomology of quasi-coherent sheaves and Serre's criterion for being affine in terms of vanishing of cohomology
- Čech cohomology: definition, isomorphism with regular cohomology for a noetherian separated scheme

- 5. Cohomology of projective space: calculation using Čech cohomology, Serre vanishing, cohomological criterion of ampleness
 - 6. Ext Groups and sheaves: definition and basic properties
- 7. Serre duality: dualizing sheaf and duality for a projective scheme, invertibility of dualizing sheaf for l.c.i., isomorphism between dualizing sheaf and canonical sheaf for nonsingular projective variety
- 8. **Higher direct images**: definition and coherence for projective morphisms
- 9. Flat morphisms: definition, properties, cohomology commutes with flat base change, flat families
- 10. Smooth morphisms: definition, properties, generic smoothness, Kleiman's theorem on transversality, étale morphisms
- 11. The Theorem on Formal Functions: Zariski's Main Theorem and Stein Factorization
 - 12. Spectral Sequences: Leray spectral sequences

3 Intersection Theory

- 1. Rational equivalence: cycles, definitions of rational equivalence, proper push-forward, flat pull-back, open-closed exact sequence, affine bundles
- Divisors: Cartier and Weil divisors, lines bundles and pseudo-divisors, intersection with divisors, chern class of line bundles
- 3. Vector Bundles and Chern classes: segre classes, chern classes, rational equivalence on bundles
- 4. Cones and Segre classes: segre class of a cone, segre class of a subscheme, multiplicity along a subvariety
- 5. **Deformation to the Normal Cone**: deformation and specialization to the normal cone
- 6. **Intersection Products**: basic construction, refined Gysin homomorphism, excess intersection formula, commutativity, functoriality, l.c.i. morphisms, blow-up formula
- 7. Intersections on non-singular varieties: refined intersections, intersection multiplicites, intersection ring
 - 8. RR for Non-singular varieties: GRR and HRR

4 Complex Algebraic Surfaces

- 1. Cohomology: RR. Noether's formula, and the genus formula
 - 2. Del Pezzo surfaces: definitions and blow-ups
 - 3. K3 surfaces: definition, cohomology, periods, polarizatiopns, examples
 - 4. Enriques surfaces: examples and correspondence with K3 surfaces
 - 5. ADE singularities: quotients, equations, and resolutions

References

- 1. Hartshorne, Algebraic Geometry
 - 2. Griffiths and Harris, Principles of Algebraic Geometry
 - 3. Fulton, Intersection Theory

 - Beauville, Complex Algebraic Surfaces
 Dolgachev and Cossec, Enriques Surfaces I