ORAL QUAL SYLLABUS: SET THEORY; RECURSION THEORY

JAY WILLIAMS

Set Theory.

- Basic set theory (Jech 1-8)
 - Königs lemma. Cardinal arithmetic in ZFC.
 - Ramsey's theorem.
 - Suslin's problem. There exists an Aronszajn tree.
 - — ♦ implies there is a Suslin tree, MA implies there is not.
 - Root system lemma.
- Forcing basics (Kunen 7,8)
 - Fundamental forcing theorems (statements).
 - Force CH. Force ¬CH. Force ◊.
 - Chain and closure conditions on a partial order.
 - Cohen forcing.
 - Product forcing.
 - Consistency of MAC+¬CH.
 - Consequences of MA, e.g. 2^{ω} is regular.
 - Easton's theorem.
- Descriptive set theory (Srivastava 1-4)

Polish and Standard Borel Spaces

- Basic definitions and examples.
- The Borel Isomorphism Theorem.
- Borel-generated topologies and the Ramsey-Mackey Theorem.
- Sequential trees. Systems of sets and their associated maps. Souslin, Lusin, and Cantor schemes. The Souslin operation A.

The Borel and Projective Hierarchies.

- Basic definitions and facts, including closure properties.
- Existence of universal sets for each. Non-collapsing of each.
- Every uncountable Polish space contains an analytic set that is not Borel.
- The reduction theorem for additive Borel classes and the separation theorem for multiplicative Borel classes.
- Equivalence of various definitions of analytic sets.
- Every coanalytic set is a union of \aleph_1 Borel sets.
- Definitions of Σ¹₁-complete, Π¹₁-complete. WF is Π¹₁-complete.
- Regularity properties: every analytic subset of a Polish space is measurable, has the Baire property, and has the perfect set property.
- Souslin's Theorem and the First Separation Theorem for analytic sets.

Recursion Theory.

- Basic definitions and theorems (Soare 1-4)
 - Recursive functions.
 - Unsolvable problems.
 - Recursively enumerable sets.
 - The Recursion Theorem.
 - Complete sets.
 - Relative computability.
 - Turing degrees.
 - The jump operator.
 - The arithmetical hierarchy.
- Constructions and methods (Soare 5-7)
 - Simple sets and Post's problem.
 - Oracle constructions of non-recursively-enumerable degrees.
 - * Construct a pair of incomparable degrees below 0'
 - * Cones of degrees
 - * Inverting the jump operator
 - * Upper and lower bounds for degrees
 - The finite injury priority method.

References.

- Jech, Thomas. Set Theory (Third Edition).
- Kunen, Kenneth. Set Theory: An Introduction to Independence Proofs.
- Srivastava, S.M. A Course on Borel Sets.
- Soare, Robert. Recursively Enumerable Sets and Degrees.