Syllabus for Oral Qualifying Exam James Dibble

Major Topic: Differential and Riemannian Geometry

Differential geometry
Smooth manifolds
Vector bundles
Lie brackets and derivatives
Submersions, immersions, and embeddings
Integration and Stokes's Theorem
de Rham cohomology
de Rham Theorem
Poincaré duality

Riemannian geometry

Riemannian metrics

First and second variation formulas

Levi-Civita connection

Geodesics and the exponential map

Gauss Lemma

Hopf-Rinow Theorem

Jacobi fields

Parallel transport

Gauss-Bonnet Theorem

Comparison geometry

Spaces of constant sectional curvature

Comparison estimates

Conjugate points

Cartan-Hadamard Theorem

Preissmann's Theorem

Bonnet-Myers Theorem

Synge's Theorem

References:

Lee, John. Introduction to Smooth Manifolds.

Lee, John. Riemannian Manifolds: An Introduction to Curvature.

Petersen, Peter. Riemannian Geometry.

Minor Topic: Algebraic Topology

Fundamental group Homotopy invariance Seifert-Van Kampen Theorem

Covering spaces
Lifting properties
Deck transformations
Classifications

Singular homology and cohomology
Degree of a map
Euler characteristic
Exact sequences and excision
Mayer-Vietoris sequence

References: