Oral Exam Combinatorics, Graph Theory, Theory of Boolean Functions

Justin Gilmer Committee: Profs M. Saks (Chair), J. Kahn, S. Kopparty, J. Beck April 18, 2012

1 Combinatorics

Basic Enumeration counting arguments, generating functions, recurrence relations, inclusion-exclusion

Set Systems: Sperner's theorem, Erdos-Ko-Rado, Kruskal-Katona, Fisher's Inequality, Frankl Wilson

Correlation Inequalities Kleitman's Lemma, FKG inequality, four function theorem

Ramsey Theory Ramsey's Theorem, infinite Ramsey theory, probabilistic lower bounds, var der Waerden

Discrepancy 6 Standard Deviations Suffice, Beck-Fiala

2 Graph Theory

Matching Hall's Theorem, Konig's Theorem

Connectivity Menger's Theorem, Max-Flow Min-Cut, Kruskal's Algorithm

Coloring: Brook's Theorem, Vizing's Theorem, 5-color theorem

Extremal Problems Turan's Theorem, Statement of Regularity lemma, Erdos-Stone Theorem, Ramsey bounds, $ex(n, P_k)$ (proof contains Dirac's Theorem), $ex(n, C_4)$, $ex(n, K_{r,s})$

- Random Graphs: Number of triangles, clique number, threshold for connectedness
- Planar Graphs Euler Characteristic, proof that K_5 , $K_{3,3}$ are not planar, Kuratowski's Theorem, Crossing number.

3 Probabilistic Methods

- Basics Markov Inequality, Chebyshev's Inequality, Chernoff bound, binomial and Poisson distributions, law of total probability
- Alteration Method property B, probabilistic construction of high girth and high chromatic number graph
- Second Moment Method: application to threshold functions for $G_{n,p}$
- **Lovasz Local Lemma:** Symmetric and general versions, application to Ramsey Bounds, R(3, k)
- **Poisson Paradigm:** Janson inequalities, number of triangles in $G_{n,p}$, number of isolated points

4 Boolean Functions

- Basic Examples: MAJ_n , TRIBES, addressing function
- Representations: Formula, Polynomial, Circuit, Decision Tree, Branching Program
- Measures of Complexity: Decision Tree, Certificate Complexity, Polynomial degree, sensitivity, block sensitivity, DNF, CNF size, bounds relating complexities
- Changing between Representations: Barrington's Theorem (group program), $bs(f) \leq C(f) \leq D(f)$, $D(f) \leq C^2$, $bs(f) \leq 2deg(f)^2$, $D(f) \leq deg(f)^2bs(f)$
- Randomization Lower Bounds: $R(f) \ge \sqrt{D(f)}$, $R(P) \ge t$ for (t,t) bipartite graphs, $R(f) \ge \left(\frac{n}{2\sqrt{p(1-p)}}\right)^{\frac{2}{3}}$ for f monotone + weakly symmetric (p the critical probability), Yao's theorem for R(P) for monotone bipartite graph properties.

Testing and decoding: BLR and Hastad Tests, Dictatorship testing Influence of variables: Uses of Fourier analysis, $Inf_i(f) = \sum_{J:i \in J} \hat{f}(J)^2$, Friedgut's Theorem, Kahn Kalai Linial