James Taylor's Oral Exam Syllabus

I. Functional Analysis

- A. Basics of Banach spaces
 - i. Examples such as L^p spaces, sequences spaces, direct sums, and quotients
 - ii. Linear functionals: duals, reflexive spaces, and the Hahn Banach theorem
 - iii. Baire category, open maps, closed graphs, and Banach-Steinhaus
 - iv. Basics of Hilbert spaces (polarization, adjoints, Riesz lemma)
- B. Useful topological notions
 - i. Nets
 - ii. Compactness (Tychonoff's Theorem, Urysohn's Lemma, Stone-Weierstrass Theorem)
 - iii. Measure theory on compact spaces (Riesz-Markov Theorem)
 - iv. Various topologies on operator spaces
 - v. The Banach-Alaoglu Theorem
- C. Bounded Operator Theory
 - i. Adjoints
 - ii. Spectrum
 - iii. Positive operators, square roots
 - iv. Compact operators
 - v. Fredholm operators and the Fredholm Alternative
 - vi. Spectral Mapping Theorem
 - vii. Functional Calculus
 - viii. Various Spectral Theorems and measures related to self-adjoint operators
- D. Unbounded Operator Theory
 - i. Definitions and generalizations
 - ii. Self-adjoint, closed, essentially self-adjoint, and symmetric operators
 - iii. Cayley Transform
 - iv. Spectral Theorem for unbounded self-adjoint operators
 - v. Stone's Theorem
- E. Differential Calculus on Banach Spaces
 - i. Derivative of operators on Banach spaces and generalizations of elementary differential calculus
 - ii. Inverse and Implicit Function Theorems
 - iii. Infinite Dimensional Manifolds and their issues
- F. Differential Operators and Spectral Theory
 - i. Schwarz space
 - ii. Fourier Transform
 - iii. Distributions
 - iv. Sobolev Spaces
 - v. Various Laplace operators and their uses
- G. Applications to Quantum Mechanics
 - i. Basics of Bohmian Mechanics and the formalism of Quantum Mechanics
 - ii. Position, momentum operators
 - iii. One-dimensional problems such as the harmonic osciallator, different potential wells
 - iv. Spin
 - v. Bell's Theorem

II. Differential Geometry

- A. Basic Definitions and examples
 - i. Definitions of Manifolds, tangent vectors, vector fields, vector bundles
 - ii. Examples: Surfaces, Lie groups-Matrix groups, submanifolds
 - iii. Various mappings such as immersions, induced maps
 - iv. Quotient manifolds: Projective spaces, Grassmann manifolds
- B. Tensors and differential forms
 - i. Tensors of all types, tensor fields, maps and tensors
 - ii. Exterior algebra, exterior derivative, differential forms
 - iii. Orientability and n-forms
 - iv. Symmetrizing, alternating, contracting, and multiplying tensors
 - v. Tensor Derivations
 - vi. Lie Derivatives
 - vii. Poincare Lemma and its partial converse
- C. Vector fields
 - i. Existence and Uniqueness Theorems for ODE
 - ii. One-Parameter groups
 - iii. Vector Fields as flows and as differential operators
 - iii. Lie algebra of vector fields
 - iv. Frobenius' Theorem and foliations
- D. Metrics and Connections
 - i. Definition of Metrics and Connections
 - ii. Covariant Derivative
 - iii. The Levi-Civita connection
 - iv. Parallel Translation
 - v. Geodesics
 - vi. Frame fields
 - vii. Exponential Map
 - viii. Hopf-Rinow Theorem
 - ix. Curvature
- E. Integration on Manifolds
 - i. Definition of the integral
 - ii. Manifolds with boundary
 - iii. Stokes' Theorem
- F. Surface theory
 - i. Fundamental Forms, Gauss Curvature, Principal Curvature
 - ii. The Gauss Theorem
 - iii. Gauss-Bonnet Theorem