Oral Qualifying Exam Syllabus

Katy Craig, November 6, 2012

Committee: Haïm Brezis, Eric Carlen, Sagun Chanillo, Zheng-Chao Han

Functional Analysis and C^* Algebras

- 1. Banach Spaces
 - (a) Weak Topology
 - (b) Weak* Topology
 - (c) Reflexive Spaces
 - (d) Separable Spaces
- 2. Hilbert Spaces
 - (a) Projection Lemma
 - (b) Riesz Representation Theorem
 - (c) Stampacchia and Lax-Milgram
 - (d) Hilbert Sums and Orthonormal Bases
- 3. Banach Algebras
 - (a) Definitions
 - (b) Spectral Theory of Banach Algebras
 - (c) The Maximal Ideal Space and the Gelfand Transform
- 4. C^* Algebras
 - (a) Involutions and C^* Algebras
 - (b) The Commutative Gelfand-Naimark Theorem
 - (c) The Abstract Spectral Theorem
 - (d) The Spectral Mapping Theorem
 - (e) Positivity in C^* -algebras
- 5. Bounded Operators on a Hilbert Space
 - (a) Definitions
 - (b) The Spectral Theorem for Normal Operators on a Hilbert Space
 - (c) The Measurable Function Calculus
- 6. Compact Operators on a Hilbert Space
 - (a) Compact Operators as the Closure of Finite Rank Operators
 - (b) Fredholm Alternative
 - (c) Riesz-Schauder Theorem (Spectrum of a Compact Operator)
 - (d) Spectral Decomposition of Self-Adjoint Compact Operators

Partial Differential Equations

- 1. Laplace Equation
 - (a) Fundamental Solution
 - (b) Properties of Harmonic Functions: Mean-Value Property, Maximum Principles, Regularity, Liouville's Theorem, Harnack's Inequality
 - (c) Green's Functions on the Half-Space and Ball
 - (d) Energy Methods: Uniqueness and Dirichlet's Principle
- 2. Heat Equation
 - (a) Fundamental Solution
 - (b) Maximum Principle, Uniqueness, Regularity
 - (c) Energy Methods: Uniqueness and Backward Uniqueness
- 3. Sobolev Spaces
 - (a) Weak Derivatives
 - (b) Sobolev Spaces
 - (c) Approximation by Smooth Functions
 - (d) Difference Quotients
 - (e) The Space $W_0^{1,p}$.
- 4. Sobolev Inequalities
 - (a) n=1
 - (b) Sobolev Inequalities, $1 \le p < n$ (GNS, Poincaré)
 - (c) Sobolev Inequalities, p = n
 - (d) Sobolev Inequalities, n (Morrey)
 - (e) Rellich-Kondrachov Compactness Theorem
- 5. Second-Order Elliptic Equations
 - (a) Definition of Elliptic Equations and Weak Solutions
 - (b) Existence of Weak Solutions via Energy Estimates
 - (c) Existence of Weak Solutions via Fredholm Alternative
 - (d) Interior Regularity
 - (e) Weak Maximum Principle
 - (f) Eigenvalues of Symmetric Elliptic Operators Form a Basis for L^2