Syllabus for Oral Qualifying Exam

Tianling Jin

Committee: Profs Y. Li(Chair), Z.C. Han, M. Kiessling, R. Nussbaum

Major Topic: Partial Differential Equations

• Laplacian Equation

- (1) Fundamental Solution.
- (2) Mean-value formulas and Converse to Mean-value property.
- (3) Properties of harmonic functions: Maximum principles, Smoothness, Local estimates, Liouville's theorem, Harnack's inequality, removable singularity, Schwarz reflection principle.
- (4) Green's functions for a ball and for a half-space.
- (5) The classic Dirichlet problem by Perron's method.
- (6) The Dirichlet's principle by variational method.

• Heat Equation

- (1) Fundamental Solution.
- (2) Maximum principles on bounded \overline{U}_T and $\mathbb{R}^n \times [0,T]$.
- (3) Backward uniqueness by energy methods.

• Wave Equation

- (1) d'Alembert's formula, Kirchhoff's formula.
- (2) Uniqueness and domain of dependence by energy methods.

Sobolev Space

- (1) Definition of Sobolev Space.
- (2) Approximation by smooth functions.
- (3) Extensions, Traces.
- (4) Gagliardo-Nirenberg-Sobolev inequality, Morrey's inequality.
- (5) Rellich-Kondrachov compact imbedding theorem.
- (6) Additional Topics: Poincare's inequality, Difference quotients.

• Second-Order Elliptic Equations

- (1) The definition of weak solutions.
- (2) Existence by Lax-Milgram theorem and energy estimates, by Fredholm alternative.
- (3) Interior regularity and boundary regularity.
- (4) Hopf's lemma, Weak/Strong Maximum principles, Hanarck's inequality.
- (5) Eigenvalues and eigenfunctions of symmetric elliptic $Lu = -\sum_{i,j=1}^{n} (a^{ij}u_{x_i})_{x_j}$

• Second-Order Parabolic Equations

- (1) The definition of weak solutions.
- (2) Existence by Galerkin approximations and Energy estimates; Uniqueness.

Minor Topic: Functional Analysis

• Banach Spaces

- (1) Metric spaces, Contraction Mapping Principle.
- (2) Normed vector spaces, Linear functionals: Hahn-Banach Theorem.
- (3) Barie Category Theorem, Open and Inverse Mapping Theorem, Closed Graph Theorem, Uniform Bounded Principle.
- (4) Dual and Reflexive spaces; Strong, Weak and Weak* Convergence.

• Hilbert Spaces

- (1) Riesz Representation Theorem, Lax-Milgram Theorem.
- (2) Orthonormal sets, Bases, Bessel's inequality, and Parseval's theorem.
- (3) Orthogonal projection.

• Compact(linear) operator

- (1) Definition.
- (2) Fredholm alternative.
- (3) Spectrum of a compact operator.
- (4) Hilbert-Schmidt theorem.

Reference:

Lawrence C. Evans: Partial Differential Equations

Gilbarg-Trudinger: Elliptic Partial Differential Equations of Second Order

Peter Lax: Functional Analysis