Topics for oral qualifying exam for Liang Kong Fall, 2001

Major topic: Vertex operator algebras

The general theory of vertex operator algebras, basic examples, the basic geometry of vertex operator algebras as presented in [FLM] (Chapters 1–8), [FHL], [H] and [L]. The specific topics are:

- 1. Definitions and properties.
 - (a) Formal calculus.
 - (b) The notions of vertex algebra and of vertex operator algebra, and basic properties.
 - (c) Rationality, commutativity and associativity (various formulations, including "weak" formulations.
- 2. Examples of vertex (operator) algebras.
 - (a) Vertex (operator) algebras based on Heisenberg Lie algebras.
 - (b) Vertex (operator) algebras based on affine Lie algebras.
 - (c) Vertex (operator) algebras on the Virasoro algebra.
 - (d) Vertex (operator) algebras on even lattices.
- 3. Representations of vertex (operator) algebras.
 - (a) The notion of module and basic properties.
 - (b) The relations between this notion and the topics listed above, including the construction of modules from mutually local operators.
 - (c) The notions of intertwining operator and fusion rule, basic properties.
 - (d) Examples of modules for the vertex operator algebras listed above.
- 4. The geometry of vertex operator algebras.

- (a) The moduli spaces of spheres with tubes, the sewing operation, examples for the sewing operation.
- (b) The geometric interpretations of vertex operators and vacua, the geometric meanings of commutativity, associativity, skew-symmetry, L(-1)-derivative property, vacuum property and creation property.
- (c) The notion of geometric vertex operator algebra and the statement of the isomorphism theorem.
- (d) Determinant lines of Fredholm operators, determinant lines over Riemann surfaces with parametrized boundaries, relation to the central charges of vertex operator algebras.

Minor topic: Quantum field theory

Basic quantum field theory as presented in [IZ] and [PS]. The specific topics are:

- 1. Classical field theory
 - (a) Action, Lagrangian, action principle and Euler-Lagrange Equation.
 - (b) Canonical momentum, Hamiltonian.
 - (c) Symmetry, Noether current, stress-energy tensor.
- 2. Canonical quantization of free theories.
- 3. Interaction quantum theory.
 - (a) *n*-point Green's functions, Wick's theorem.
 - (b) Feynman diagrams.
 - (c) Loop integral computation, dimensional regularization.
- 4. Functional integral formulation of quantum field theory.
 - (a) Partition function, Feynman-Kac formula.
 - (b) Feynman diagram.
 - (c) Equation of motion, Ward's identity.

- 5. Systematic renormalization.
 - (a) Renormalizability, counterterms.
 - (b) 1-loop result of the ϕ^4 theory.
 - (c) Callan-Symanzyk equation.
 - (d) Running coupling constant, $\beta(g)$, and its one-loop calculation. (optional)

References

- [FHL] I. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Memoirs Amer. Math. Soc. 104 (1993).
- [FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, 1988.
- [H] Y.-Z. Huang, Two-dimensional conformal geometry and vertex operator algebras, Progress in Math., Vol. 148, Birkhäuser Boston, 1997.
- [L] H. Li, Local systems of vertex operators, vertex superalgebras and modules,
 J. Pure and Applied Algebra 109 (1996), 143-195.
- [IZ] C. Itzykson and J. B. Zuber, Quantum field theory, International Series in Pure and Applied Physics. McGraw-Hill International Book Co., New York, 1980.
- [PS] M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory, edited and with a foreword by D. Pines, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1995.