## Syllabus for Qualifying Exam, Spring 2000

## Madalena Chaves

## Topic 1: Control Theory

- 1. Linear time-invariant finite-dimensional systems
  - formula for solution
  - continuous and discrete time
- 2. Controllability of linear systems
  - time-invariant controllability rank condition
  - Kalman controllability decomposition
  - Hautus Lemma
  - controllability under sampling
  - computing controls; finite horizon least squares
  - time-varying controllability rank condition
- 3. Controllability of nonlinear systems
  - local controllability
  - accessibility rank condition
  - reversible systems
- 4. Outputs
  - observability of time-invariant linear systems
  - sampled observability
  - local observability
- 5. Feedback
  - constant linear feedback; Pole-Shifting Theorem
  - disturbance rejection and invariance
  - stability and stabilizability
  - control-Lyapunov functions
  - observers and detectability; dynamic feedback
- 6. Linear Quadratic control
  - LQ systems
  - Deterministic Kalman filtering
  - infinite time problems

## Topic 2: Numerical Analysis

- 1. Polynomial Approximation
  - Lagrange interpolation

- Cubic Hermite interpolation
- Piecewise polynomial approximation
- Some error results
- 2. Numerical Quadrature
  - (composite) Trapezoidal, Simpson's and midpoint rules
  - Derivation and error formulas
  - Basic results of Gaussian quadrature formulas
- 3. Numerical methods for ordinary differential equations
- Derivation and error estimates for one-step methods (e.g., Euler's method)
  - Multistep methods (examples of explicit and implicit methods)
  - Predictor-corrector methods
  - Consistency, stability, and convergence of multistep methods
- 4. Finite Difference methods for partial differential equations
- Laplace's equation: 5 point difference scheme, error estimates using discrete maximum principle
- Simple difference approximations of time dependent equations (transport, heat, and wave equations)
  - Error analysis by the maximum principle
  - Von Neumann stability condition
- 5. Finite Element methods for elliptic partial differential equations
- Standard variational formulation of boundary value problems with Dirichlet or Neumann boundary conditions
  - Energy norm error estimates
- Solution of the resulting matrix equations (existence and uniqueness of solutions, iterative schemes)