SYLLABUS ORAL QUALIFYING EXAM

Manuel Larenas Spring 2012

I FUNCTIONAL ANALYSIS

1. Hilbert spaces

Riesz lemma, orthonormal bases, mean ergodic theorem.

2. Banach spaces

Dual spaces, Hahn-Banach theorem, Baire category theorem, uniform boundedness principle, open mapping theorem, closed graph theorem.

3. Locally convex spaces

Fréchet spaces, Schwartz space, tempered distributions.

4. Bounded operators

Operator topologies, adjoint, spectrum, positive operators, polar decomposition.

5. The spectral theorem

Functional calculus, spectral measures, spectral projections, Stone's formula.

6. Unbounded operators

Closed operators, self-adjoint operators, spectral theorem, Stone's theorem, quadratic forms, convergence of unbounded operators.

II C*-ALGEBRAS

- 1. Spectral theory and Banach algebras
- 2. Operators on Hilbert space

Commutative C^* -algebras, the spectral theorem for normal operators, compact operators.

3. Compact perturbations and Fredholm theory

Fredholm alternative, Fredholm operators.

4. States and the GNS construction

The Gelfand-Naimark theorem.

REFERENCES

- (1) M. Reed, B. Simon, Methods of modern mathematical physics. Vol. I. Functional analysis. Academic Press, 1980.
- (2) W. Arveson, A short course on spectral theory. Springer-Verlag New York, Inc., 2002.