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FUNCTIONAL ANALYSIS

1.

Hilbert spaces
Riesz lemma, orthonormal bases, mean ergodic theorem.

. Banach spaces

Dual spaces, Hahn-Banach theorem, Baire category theorem, uniform boundedness principle,
open mapping theorem, closed graph theorem.

. Locally convex spaces

Fréchet spaces, Schwartz space, tempered distributions.

. Bounded operators

Operator topologies, adjoint, spectrum, positive operators, polar decomposition.

. The spectral theorem

Functional calculus, spectral measures, spectral projections, Stone’s formula.

. Unbounded operators

Closed operators, self-adjoint operators, spectral theorem, Stone’s theorem, quadratic forms,
convergence of unbounded operators.

C*-ALGEBRAS

. Spectral theory and Banach algebras

. Operators on Hilbert space

Commutative C*-algebras, the spectral theorem for normal operators, compact operators.

. Compact perturbations and Fredholm theory

Fredholm alternative, Fredholm operators.

. States and the GNS construction

The Gelfand-Naimark theorem.
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