Oral Qualifying Exam Syllabus

Nicholas Weininger 17th September 2002

Committee: Profs. E. Allender, J. Beck, J. Kahn, M. Saks

1 Combinatorics and graph theory

1.1 Combinatorics

Basics: counting arguments, generating functions, binomial coefficients, recurrence relations, inclusion-exclusion principle, Stirling's formula.

Set systems: Sperner's theorem, Fisher's and generalized Fisher's inequalities, existence of Steiner systems, Frankl-Wilson theorem, Borsuk conjecture and Kahn-Kalai counterexample, Baranyai's theorem.

Extremal problems: Intersecting families, Erdős-Ko-Rado theorem, Harper's theorem, Kruskal-Katona theorem, compression method.

Lattices: Geometric and distributive lattices, Birkhoff covering property, Jordan-Dedekind chain condition, Möbius inversion, Weisner's theorem, Dowling-Wilson theorem.

Correlation inequalities: Harris/Kleitman theorem, FKG inequality, Four Functions Theorem, application to xyz inequality.

Discrepancy results: Erdős-Selfridge theorem, Beck-Fiala theorem, Roth's theorem on 2-D discrepancy, Roth's "second theorem" (discrepancy in arithmetic progressions), properties of positive-density sets.

Ramsey theory: Ramsey's theorem for graphs and hypergraphs, König's lemma, infinite Ramsey theorem, general upper bounds, probabilistic lower bounds, stepping-up lemma, van der Waerden's theorem.

References: notes for Combinatorics I and II, fall 2001-spring 2002; notes for Combinatorics II, spring 2001; van lint and Wilson, A Course in Combinatorics.

1.2 Graph theory

Matchings: König-Hall theorem, Hungarian algorithm, Tutte's 1-factor theorem, Berge's theorem.

Connectivity and spanning trees: basic properties, Menger's theorem, Max-Flow-Min-Cut theorem, Matrix-Tree Theorem, Prüfer codes, minimum-cost spanning trees.

Planarity: Euler's formula, Kuratowski's theorem.

Coloring: chromatic and edge chromatic numbers, Brooks' theorem, Vizing's theorem, perfect graphs, Lovász perfect graph theorem.

Extremal problems: Turán's theorem, Erdős-Stone theorem.

Regularity lemma: statement (not proof!) and application to graph Ramsey numbers (CRST result).

Graph minors: Wagner's theorem, application to equivalence of four-color theorem and Hadwiger's conjecture for case r = 5.

References: notes for Graph Theory, spring 2001; Diestel, Graph Theory.

1.3 Probabilistic methods

Probability basics: linearity of expectation, Bonferroni inequalities, binomial and Poisson distributions, conditional probabilities, law of total probability, Chebyshev's inequality, Chernoff bound, coupling and stochastic domination.

Random graphs: monotone properties, $G_{n,p}$ versus $G_{n,M}$, existence of threshold functions, relationship between connectedness and having no isolated vertices, probabilistic refutation of Hajós conjecture.

Second Moment Method: general procedure, application to threshold function for having a certain graph as a subgraph.

Lovász Local Lemma: symmetric and asymmetric versions, applications to hypergraph discrepancy and Latin transversals.

Martingales: Azuma's inequality, edge and vertex exposure, application to chromatic number.

Poisson paradigm: Janson inequalities, application to number of triangles in $G_{n,p}$; Brun's sieve, application to number of isolated points in $G_{n,p}$.

References: notes for Probabilistic Methods in Combinatorics, fall 2001; Alon and Spencer, *The Probabilistic Method*, 2nd ed.

2 Computational complexity theory

Separation theorems: Gap Theorem, Time and Space Hierarchy Theorems (deterministic and nondeterministic versions), Blum Speedup Theorem.

Relating circuit and TM complexity: nonuniform circuit complexity vs. Turing machines with advice functions, definition and bounds for alternating TMs, relationship between uniform circuit families and alternating TMs.

NC hierarchy: definitions of NC^i , AC^i , SAC^i , closure of SAC^i under complementation. Branching programs and NC^1 , nonsolvable group method.

Reducibility: polytime many-one, Turing reducibility, stricter circuit reducibility notions (AC^0 reducibility etc), randomized reducibility.

Lower bounds: simple bounds, polynomial method, Smolensky's theorem. Hastad's switching lemma and application to circuit lower bounds.

Isolation method: the Isolation Lemma, application to proof that NL/poly = UL/poly.

Polynomial hierarchy: unambiguous and probabilistic complexity classes, error types (n-sided for n = 0, 1, 2), Toda's Theorem.

Derandomization: Nisan-Wigderson pseudorandom generator, application to derandomizing BPP.

Query complexity: deterministic, nondeterministic, and quantum versions, sensitivity/block sensitivity/certificate complexity bounds, degree bounds, adversary bounds.

Space-bounded complexity: Savitch's theorem, closure of NL under complementation.

References: notes from Computational Complexity Theory, spring 2002; notes from Quantum Computation, spring 2001; Vollmer, Introduction to Circuit Complexity; Hemaaspandra and Ogihara, The Complexity Theory Companion.