Topics for oral qualifying exam for Shashank Kanade Fall, 2011

Major topic: Vertex operator algebras

1. Definitions and properties

- (a) Formal calculus
- (b) The notions of vertex algebra and of vertex operator algebra, and basic properties
- (c) Rationality, commutativity and associativity and the equivalence of various formulations, including "weak" formulations

2. Representations of vertex (operator) algebras

- (a) The notion of module and basic properties
- (b) Weak vertex operators
- (c) The structure of the canonical weak vertex algebra. Local subalgebras and vertex subalgebras of the canonical weak vertex algebra
- (d) Equivalence between modules and representations
- (e) General construction theorems for vertex (operator) algebras and modules

3. Examples of vertex (operator) algebras and modules

- (a) Vertex (operator) algebras and modules based on the Virasoro algebra
- (b) Vertex (operator) algebras and modules based on affine Lie algebras
- (c) Vertex (operator) algebras and modules based on Heisenberg Lie algebras
- (d) Vertex (operator) algebras and modules based on even lattices
- (e) Vertex operator construction of the affine Lie algebras corresponding to A_n, D_n and E_n

4. Tensor category theory for vertex operator algebras

- (a) Contragredient modules for vertex operator algebras
- (b) Strongly graded conformal and Möbius vertex algebras and their generalized modules
- (c) Logarithmic formal calculus and properties of logarithmic intertwining operators
- (d) P(z)-intertwining maps and the notion of P(z)-tensor product

Minor topic: Lie algebras

- 1. Poincaré-Birkhoff-Witt theorem.
- 2. Kac-Moody algebras
 - (a) Root space decomposition

- (b) The invariant bilinear form and the generalized Casimir element
- (c) Weyl group
- (d) Real and imaginary roots, definitions and properties
- 3. Affine Lie algebras
 - (a) Classification of affine Lie algebras, twisted and untwisted
 - (b) Explicit realization of Affine Lie algebras
 - (c) Explicit description of the root system and the Weyl group
- 4. Representation theory of Kac-Moody algebras
 - (a) Integrable representations of Kac-Moody algebras
 - (b) The category O, highest-weight modules and Verma modules
 - (c) Formal characters of modules in O
 - (d) Integrable highest-weight modules, the character formula, the numerator formula and the denominator formula
 - (e) Specializations of the character
- 5. Examples of Chevalley groups given by generators and relations

References

- [FHL] I. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Memoirs Amer. Math. Soc. 104 (1993).
- [FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, 1988.
- [HLZ1] Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules, arXiv:1012.4193.
- [HLZ2] Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, II: Logarithmic formal calculus and properties of logarithmic intertwining operators arXiv:1012.4196.
- [HLZ3] Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, III: Intertwining maps and tensor product bifunctors, arXiv:1012.4197.
- [L] J. Lepowsky, Lectures on Kac-Moody Lie algebras, Université Paris VI, 1978.
- [LL] J. Lepowsky and H. Li, Introduction to vertex operator algebras and their representations, Birkhäuser, 2004.
- [S] R. Steinberg, Lectures on Chevalley groups, Yale university, 1967.