ORAL QUALIFYING EXAM SYLLABUS DESCRIPTIVE SET THEORY; CLASSICAL GROUPS

SCOTT SCHNEIDER

Classical Descriptive Set Theory

• Basic Set Theory (Jech 1-8).

Polish and Standard Borel Spaces.

- Basic definitions and examples: \mathcal{N} , \mathcal{C} , \mathbb{H} , \mathbb{R} , [0,1], $[0,1] \setminus \mathbb{Q}$; embeddings between them; topological properties; \mathbb{Q} not Polish.
- A topological space is Polish if and only if it is homeomorphic to a G_{δ} subset of \mathbb{H} .
- Every Borel subset of a Polish space is a continuous image of \mathcal{N} and a continuous, injective image of a closed subset of \mathcal{N} .
- The Borel Isomorphism Theorem.
- Borel-generated topologies and the Ramsey-Mackey Theorem.
- Sequential trees, including the rank function and Kleene-Brouwer ordering; systems of sets and their associated maps; Souslin, Lusin, and Cantor schemes; the Souslin operation A.
- Cantor-Bendixson analysis on Polish spaces.

The Borel and Projective Hierarchies.

- Basic definitions and facts, including closure properties.
- Existence of universal sets for each; non-collapsing of each. There does not exist a universal Borel set; there does exist a universal analytic set.
- Every uncountable Polish space contains an analytic set that is not Borel.
- The reduction theorem for additive Borel classes and the separation theorem for multiplicative Borel classes.
- Equivalence of various definitions of analytic sets.
- Every coanalytic set is a union of \aleph_1 Borel sets.
- Definitions of Σ_1^1 -complete, Π_1^1 -complete; WF is Π_1^1 -complete.
- Regularity properties: every analytic subset of a Polish space is measurable, has the Baire property, and has the perfect set property.
- Strong measure zero and Lusin sets.
- Souslin's Theorem and the First Separation Theorem for analytic sets.

Geometry of the Classical Groups.

Chapters 1-5, 7-8 of Taylor.

- Group Actions: primitive groups; Iwasawa's Theorem.
- Affine and Projective Geometry: basic definitions and the fundamental theorems.
- The groups $\Gamma L(V)$, GL(V), SL(V), $P\Gamma L(V)$, PGL(V), and PSL(V).
- Transvections in SL(V).
- The simplicity of PSL(V), using Iwasawa.
- The BN-pair and split BN-pair axioms.
- Flags, chambers, apartments, and buildings.
- The BN-pair of SL(V), including the Weyl group.
- Correlations of $\mathcal{P}(V)$, σ -semilinear isomorphisms $V \to V^*$, and non-degenerate σ -sesquilinear forms on V.
- The Birkhoff-von Neumann theorem on the classification of forms.
- Symmetric, alternating, hermitian, and quadratic forms.
- Witt's theorem.
- Bases of orthogonal hyperbolic pairs.
- The group $\Gamma L^*(V)$.
- Polar frames and the building of a polarity.
- The groups Sp(V) and $\Gamma Sp(V)$.
- Symplectic bases.
- Symplectic transvections.
- The simplicity of PSp(V), using Iwasawa.
- Symplectic BN-pairs and symplectic buildings.

References

- Jech, Thomas. Set Theory (Third Edition).
- Srivastava, S.M. A Course on Borel Sets.
- Taylor, Donald. The Geometry of the Classical Groups.