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Partial Differential Equationsi

Poisson's Equation: Fundamental solution, mean value property, maximum principle, Green's
functions, Poisson's integral formula, Harnack's inequality, Liouville's theorem, Perron's method, single
and double layer potentials, regularity

Heat [ quation: Fundamental solution, maximum principle, uniqueness, energy estimate, Duhamel's
principle, mean-value formula, regularity

Wave Equation: D'Alembert's solution, method of spherical means, energy methods, Duhamel's
principle, domain of dependence

Sobolev Spaces; weak derivatives, approximation by smooth functions, extensions, compact
embedding, Morrey's inequality, Gagliardo-Nirenberg inequality, Poincare inequality

Second-Order Eiliptic Equations: weak solutions, Lax-Milgram theorem, interior and boundary
regularity of solutions, maximum principle, Harnack inequality

Functional Analysis

Banach Spaces: Hahn-Banach theorem, Baire Category theorem and its consequences, linear
functionals, dual space, weak and weak* topologies, reflexivity, separability

Mibert Spaces: inner products, projection, Riesz Representation theorem, Lax-Milgram theorem,
orthogonality, orthonormal bases

Compact Operators: definition, adjoints, spectral properties, Fredholm alternative, spectral
decomposition of self-adjoint operators

Fourier Transror m: definition and properties, inversion, convolution, Riemann-Lebesgue lemma,
Plancherel’s theorem, Parseval’s formula, Hausdorff-Young inequality, tempered distributions.
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