Topics for oral qualifying exam for Tom Robinson Spring, 2006

Major topic: Vertex operator algebras

- 1. Definitions and properties.
 - (a) Formal calculus.
 - (b) The notions of vertex algebra and of vertex operator algebra, and basic properties.
 - (c) Rationality, commutativity and associativity; equivalence of various formulations, including "weak" formulations.
- 2. Representations of vertex (operator) algebras.
 - (a) The notion of module and basic properties.
 - (b) Weak vertex operators.
 - (c) The structure of the canonical weak vertex algebra. Local subalgebras and vertex subalgebras of the canonical weak vertex algebra.
 - (d) The equivalence between modules and representations.
 - (e) General construction theorems for vertex (operator) algebras and modules.
- 3. Examples of vertex (operator) algebras and modules.
 - (a) Vertex (operator) algebras and modules based on the Virasoro algebra.
 - (b) Vertex (operator) algebras and modules based on affine Lie algebras.
 - (c) Vertex (operator) algebras and modules based on Heisenberg Lie algebras.
 - (d) Vertex (operator) algebras and modules on even lattices.
 - (e) Vertex operator construction of the affine Lie algebras corresponding to A_n , D_n and E_n .

- 4. The fundamentals of logarithmic tensor product theory for generalized modules for a conformal vertex algebra.
 - (a) The notions of conformal and Möbius vertex algebra.
 - (b) The notions of module and of generalized module.
 - (c) Opposite vertex operators, and contragredient modules and generalized modules.
 - (d) The notions of intertwining operator, logarithmic intertwining operator and fusion rule; basic properties.
 - (e) Logarithmic formal calculus.
 - (f) The notion of P(z)-tensor product of generalized modules.

Minor topic: Lie algebras

- 1. Elementary notions and basic theory
 - (a) Definitions, examples, representations, modules
 - (b) Solvable, nilpotent, simple and semisimple Lie algebras and the Killing form
 - (c) Lie's theorem
 - (d) Engel's theorem
 - (e) Cartan subalgebras
 - (f) Cartan's criteria for semisimplicity and solvability
 - (g) Semisimple Lie algebras as direct products of simple Lie algebras
 - (h) Complete reducibility of modules for semisimple Lie algebras
- 2. Semisimple Lie algebras and root systems
 - (a) Representations of sl(2)
 - (b) Root space decomposition
 - (c) Axiomatics of root systems; simple roots; Weyl group
 - (d) Classification
 - (e) Construction of root systems

- 3. Universal enveloping algebras
 - (a) Construction of the universal enveloping algebra
 - (b) The Poincaré-Birkhoff-Witt theorem
 - (c) Free Lie algebras

References

- [FHL] I. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Memoirs Amer. Math. Soc. 104 (1993).
- [FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, 1988.
- [HLZ] Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor product theory for generalized modules for a conformal vertex algebra, to appear.
- [H] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Second Printing, Revised, Springer-Verlag, 1972.
- [LL] J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and Their Representations, Progress in Math., Vol. 227, Birkhäuser, Boston, 2003.
- [LM] J. Lepowsky and G. McCollum, Elementary Lie algebra theory, Yale Univ. Lecture Note Series, 1974, 138 pgs.; corrected, 1982, Rutgers Univ.