# Topics for oral qualifying exam for Zhixiang Wang Spring, 2003

## Major topic: Vertex operator algebras

The general theory of vertex operator algebras, basic examples, the basic geometry of vertex operator algebras as presented in [FLM] (Chapters 1–8), [FHL], [H] and [LL]. The specific topics are:

- 1. Definitions and properties.
  - (a) Formal calculus.
  - (b) The notions of vertex algebra and of vertex operator algebra, and basic properties.
  - (c) Rationality, commutativity and associativity (various formulations, including "weak" formulations.
- 2. Examples of vertex (operator) algebras.
  - (a) Vertex (operator) algebras based on Heisenberg Lie algebras.
  - (b) Vertex (operator) algebras based on affine Lie algebras.
  - (c) Vertex (operator) algebras on the Virasoro algebra.
  - (d) Vertex (operator) algebras on even lattices.
- 3. Representations of vertex (operator) algebras.
  - (a) The notion of module and basic properties.
  - (b) The relations between this notion and the topics listed above, including the construction of modules from mutually local operators.
  - (c) The notions of intertwining operator and fusion rule, basic properties.
  - (d) Examples of modules for the vertex operator algebras listed above.
- 4. The geometry of vertex operator algebras.
  - (a) The moduli spaces of spheres with tubes, the sewing operation, examples for the sewing operation.

- (b) The geometric interpretations of vertex operators and vacua, the geometric meanings of commutativity, associativity, skew-symmetry, L(-1)-derivative property, vacuum property and creation property.
- (c) The notion of geometric vertex operator algebra and the statement of the isomorphism theorem.
- (d) Determinant lines of Fredholm operators, determinant lines over Riemann surfaces with parametrized boundaries, relation to the central charges of vertex operator algebras.

### Minor topic: Riemann geometry

Basic Riemannian geometry as presented in the first six chapters of [P]. The specific topics are:

#### 1. Riemannian metrics

- (a) Riemannian manifolds and maps.
- (b) Groups and Riemannian manifolds.
- (c) Local representations of metrics.
- (d) Doubly warped products.

#### 2. Curvature

- (a) Connections and curvature.
- (b) The fundamental curvature equations and the equations of Riemannian geometry.

#### 3. Examples

- (a) Warped products.
- (b) Hyperbolic space.
- (c) Left-invariant metrics.
- (d) Complex projective space.

#### 4. Hypersurfaces

- (a) The Gauss map
- (b) Existence of hypersurfaces.
- (c) The Gauss-Bonnet theorem.

#### 5. Geodesics and distance

- (a) The connection along curves and geodesics.
- (b) The metric structure of a Riemannian manifold.
- (c) The exponential map.
- (d) Short geodesics are segments.
- (e) Local geometry in constant curvature.
- (f) Completeness.
- (g) Characterization of segments
- (h) Metric characterization of maps.

#### 6. Sectional curvature comparison

- (a) Basic comparison estimates.
- (b) Riemannian covering maps.
- (c) Positive sectional curvature.

# References

- [FHL] I. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Memoirs Amer. Math. Soc. 104 (1993).
- [FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, 1988.
- [H] Y.-Z. Huang, Two-dimensional conformal geometry and vertex operator algebras, Progress in Math., Vol. 148, Birkhäuser Boston, 1997.
- [LL] J. Lepowsky and H. Li, Introduction to vertex operator algebras and their representations, to appear.
- [P] P. Petersen, Riemannian geometry, Graduate Text in Mathematics, Springer-Verlag, New York, 1997.