Topics for oral qualifying exam for Jinwei Yang Fall, 2009

Major topic: Vertex operator algebras

- 1. Definitions and properties.
 - (a) Formal calculus.
 - (b) The notions of vertex algebra and of vertex operator algebra, and basic properties.
 - (c) Rationality, commutativity and associativity; equivalence of various formulations, including "weak" formulations.
- 2. Representations of vertex (operator) algebras.
 - (a) The notion of module and basic properties.
 - (b) Weak vertex operators.
 - (c) The structure of the canonical weak vertex algebra. Local subalgebras and vertex subalgebras of the canonical weak vertex algebra.
 - (d) The equivalence between modules and representations.
 - (e) General construction theorems for vertex (operator) algebras and modules.
- 3. Examples of vertex (operator) algebras and modules.
 - (a) Vertex (operator) algebras and modules based on the Virasoro algebra.
 - (b) Vertex (operator) algebras and modules based on affine Lie algebras.
 - (c) Vertex (operator) algebras and modules based on Heisenberg Lie algebras.
 - (d) Vertex (operator) algebras and modules on even lattices.
 - (e) Vertex operator construction of the affine Lie algebras corresponding to A_n , D_n and E_n .

- 4. Construction of the Moonshine Module.
 - (a) The Golay Code and the Leech Lattice.
 - (b) The twisted and untwisted space formed from the Leech Lattice.
 - (c) The Moonshine Module and the Griess Algebra.
 - (d) Basic properties of the Moonshine Module.

Minor topic: Group Theory

- 1. Subnormality
 - (a) Definition and basic properties
 - (b) Nilpotent groups
 - (c) Fitting's Theorem
 - (d) Frattini subgroup
 - (e) Quasisimple and semisimple groups
 - (f) Components
 - (g) Bender's Theorem
- 2. Extra-special p-groups
 - (a) Definition and basic properties
 - (b) Automorphisms of extra-special p-groups
- 3. Geometry of the classical groups
 - (a) Iwasawa's criterion
 - (b) The simplicity of the classical groups
 - (c) Classification of nondegenerate alternating, sesquilinear, and quadratic forms over finite fields
 - (d) Witt's Lemma
 - (e) Buildings and BN pairs associated to the classical groups

References

- [FHL] I. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Memoirs Amer. Math. Soc. 104 (1993).
- [FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, 1988.
- [LL] J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and Their Representations, Progress in Math., Vol. 227, Birkhäuser, Boston, 2003.
- [L] R. Lyons, Notes on the structure of finite groups, 2009.
- [T] D. Taylor, The Geometry of the Classical Groups, Berlin: Heldermann, 1992.