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Session 1. Algebra

The Qualifying Examination consists of three two-hour sessions. This is
the first session. The questions for this session are divided into two parts.

Answer all of the questions in Part I (numbered 1, 2, 3).

Answer one of the questions in Part II (numbered 4, 5).

If you work on both questions in Part II, state clearly which one should be
graded. No additional credit will be given for more than one of the questions
in Part II. If no choice between the two questions is indicated, then the first
optional question attempted in the examination book(s) will be the only one
graded. Only material in the examination book(s) will be graded,
and scratch paper will be discarded.

Before handing in your exam at the end of the session:

• Be sure your special exam ID code symbol is on each exam book that
you are submitting.

• Label the books at the top as “Book 1 of X”, “Book 2 of X”, etc., where
X is the total number of exam books that you are submitting.

• Within each book make sure that the work that you don’t want graded
is crossed out or clearly labeled to be ignored.

• At the top of each book, clearly list the numbers of those problems
appearing in the book and that you want to have graded. List them in
the order that they appear in the book.



Part I. Answer all questions.

1. Let G be an abelian group and for each positive integer n, define

G[n] = {g ∈ G |ng = 0}.

(a) Show that if m and n are positive integers and m divides n, then
G[m] ⊆ G[n], and G[n]/G[m] is isomorphic to a subgroup of G[n/m].

(b) Give an example in which m divides n but G[n]/G[m] 6∼= G[n/m].
Prove your assertion.

SOLUTION: Obviously G[n] is a subgroup of G. Write n/m = r ∈ Z. For
any g ∈ G[m], ng = (rm)g = r(mg) = r0 = 0, so g ∈ G[n]. Therefore
G[m] ⊆ G[n].

Define f : G[n] → G by f(g) = mg. Then f is obviously a homomor-
phism, and since r(f(g)) = r(mg) = ng = 0 for all g ∈ G[n], the image of f
is a subgroup of G[r]. The kernel of f is obviously G[n] ∩G[m] = G[m]. By
the first isomorphism theorem, G[n]/G[m] is isomorphic to the image of f ,
proving (a).

For (b), let p be a prime and G be cyclic of order p2. Take m = p2 and
n = p3. Then G[n] = G = G[m] so G[n]/G[m] = 0. However, |G[n/m]| =
|G[p]| = p.

2. Let T be a square matrix over C.

(a) Show that if T is invertible and T k is diagonalizable for some positive
integer k, then T is diagonalizable.

(b) Show that the invertibility hypothesis cannot be omitted in (a).

SOLUTION: (a) Replacing T by a similar matrix U = PTP−1, we have
Uk = PT kP−1 diagonalizable and U invertible, and if U is diagonalizable
then so is T . Therefore it suffices to do the case in which T is in Jordan
canonical form. Now a matrix in block-diagonal form is diagonalizable if
and only if every block is diagonalizable. Therefore we may assume that T
is a single Jordan block, of size r, say, and we must prove that r = 1. By
induction, if r > 1, the (1, 2)-entry of T n is nλn−1, where λ is the unique
eigenvalue of T ; also the diagonal entries of T n are all λn. Since T is invertible,
λ 6= 0. Thus T k 6= λkI. But by assumption PT kP−1 is diagonal for some P ,
whence PT kP−1 = λkI and then T k = λkI, a contradiction. Therefore r = 1
and the statement is proved.



ALTERNATIVE SOLUTION:
(a) Since T k is diagonalizable there exists a monic polynomial f ∈ C[t]

without multiple roots such that f(T k) = 0. Write f(t) =
∏n

i=1(t − zi),
where z1, . . . , zn are distinct. Since T is invertible, so is T k, and so zi 6= 0 for
each i = 1, . . . , n. Set g(t) = f(tk). Then g(t) =

∏n
i=1(t

k − zi). The roots of
g(t) are the kn kth roots of z1, . . . , zn. Since the zi’s are distinct and none of
them equals 0, the kn roots of g are distinct. Finally, g(T ) = f(T k) = 0 and
as g has no multiple roots, T is diagonalizable.

(b) As a counterexample when the invertibility condition is removed,

let T =

[
0 1
0 0

]
. Then T 2 = 0 is diagonal, but T , which is nonzero with

eigenvalues 0 and 0, is not diagonalizable (if it were, it would equal 0).

3. Let I be an ideal in a principal ideal domain R. Show that if I 6= R, then
∞⋂
n=1

In = (0).

(Here In is the ideal generated by all products x1 · · ·xn such that xi ∈ I for
all i = 1, . . . , n.)

SOLUTION: Assume by way of contradiction that there is 0 6= x ∈
⋂∞
n=1 I

n.
Now I = Ra for some a ∈ R. Then x ∈ In = Ran so an divides x, for
all n = 1, 2, . . . . On the other hand R, being a PID, is a UFD, and so
x, being nonzero, has only finitely many divisors, up to multiplication by
units. Therefore there exist positive integers m > n and a unit u such that
am = uan. Hence am−n = u is a unit. But am−n ∈ I so I = R, contradiction.

ALTERNATIVE SOLUTION:
As above, proceeding by contradiction, 0 6= x ∈ Ran for all n = 1, 2, . . . .

So there exist b1, b2, · · · ∈ R such that x = bna
n for all n. Then bn = bn+1a

for each n so Rb1 ⊆ Rb2 ⊆ · · · ⊆ Rbn ⊆ · · · . But R is a PID, hence R is
noetherian, so Rbn = Rbn+1 for some n. Then bn and bn+1 divide each other
so a must be a unit. But then I = Ra = R, contradiction.

Part II. Answer one of the two questions.
If you work on both questions, indicate clearly which one should be graded.

4. Let B be a nondegenerate symmetric bilinear form on a 2-dimensional vector



space V over the finite field Fp of p elements, where p is prime. Assume that
p 6= 2. Show that there is always a vector v ∈ V such that B(v, v) = 1.

SOLUTION: Since p 6= 2, there is a basis {e1, e2} of V which is orthogonal
(B(e1, e2) = 0). As B is nondegenerate, B(ei, ei) 6= 0 for i = 1 and i = 2. The
nonzero squares in F ∗p form a (multiplicative) subgroup of index 2. Fix a non-
square a ∈ F ∗p . Replacing the ei’s by appropriate scalar multiples, we may
then assume that B(e1, e1) is either 1 or a, and the same holds for B(e2, e2).
If some B(ei, ei) = 1, we are done, so assume that B(e1, e1) = B(e2, e2) = a.

Then for any scalars x, y, B(xe1 + ye2, xe1 + ye2) = (x2 + y2)a so it is
enough to prove that x and y exist in Fp such that x2 + y2 = 1/a (and here
1/a is, like a, a non-square). If x2 + y2 = c is a non-square for some x, y,
then (xz)2 + (yz)2 = cz2 = 1/a for suitable z ∈ Fp, as desired. So we may
assume that x2 +y2 is a square for each x, y ∈ Fp. Then the set of all squares
(including 0) forms an additive subgroup of Fp of order 1+((p−1)/2), which
contradicts Lagrange’s Theorem.

5. Let G be a finite group acting transitively on a set Ω and suppose that
|Ω| = pm for some prime p and positive integer m. Let P be a Sylow p-
subgroup of G (for the same prime p). Prove: P acts transitively on Ω.

SOLUTION:
Write |G| = pna, with (p, a) = 1. Thus, |P | = pn. Fix α ∈ Ω and set

H = Gα. Then |G : H| = |Ω| = pm so |H| = pn−ma. Then Pα = P ∩H has
order pc with c ≤ n−m, by Lagrange. So |P : Pα| = pn/pc ≥ pm = |Ω|. As
P acts on Ω, the P -orbit containing α therefore has cardinality at least |Ω|,
so that P -orbit is all of Ω. Therefore P acts transitively on Ω.

ALTERNATIVE SOLUTION:
Again fix α ∈ Ω and set H = Gα. Consider PH = {xh |x ∈ P, h ∈ H}.

(PH need not be a subgroup of G, a priori.) Then PH is a union of right
cosets of P so |P | divides |PH|. Likewise PH is a union of left cosets of
H so |H| divides |PH|. Therefore |PH| is divisible by l.c.m.(|P |, |H|). But
|G|/|H| = |G : H| = |Ω| is a power of p by assumption, and |G|/|H| divides
|G|, so |G|/|H| divides |P |. Therefore l.c.m.(|P |, |H|) = |G|, so PH = G.

Now choose any β ∈ Ω. Since G is transitive on Ω, there is g ∈ G such
that g.α = β. Write g = xh with x ∈ P and h ∈ H. Then β = xh.α =
x.(h.α) = x.α. As β ∈ Ω was arbitrary and x ∈ P , P is transitive on Ω.

End of Session 1



RUTGERS UNIVERSITY

GRADUATE PROGRAM IN MATHEMATICS

Written Qualifying Examination
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Session 2. Complex Variables and Advanced Calculus

The Qualifying Examination consists of three two-hour sessions. This is
the second session. The questions for this session are divided into two parts.

Answer all of the questions in Part I (numbered 1, 2, 3).

Answer one of the questions in Part II (numbered 4, 5).

If you work on both questions in Part II, state clearly which one should be
graded. No additional credit will be given for more than one of the questions
in Part II. If no choice between the two questions is indicated, then the first
optional question attempted in the examination book(s) will be the only one
graded. Only material in the examination book(s) will be graded,
and scratch paper will be discarded.

Before handing in your exam at the end of the session:

• Be sure your special exam ID code symbol is on each exam book that
you are submitting.

• Label the books at the top as “Book 1 of X”, “Book 2 of X”, etc., where
X is the total number of exam books that you are submitting.

• Within each book make sure that the work that you don’t want graded
is crossed out or clearly labeled to be ignored.

• At the top of each book, clearly list the numbers of those problems
appearing in the book and that you want to have graded. List them in
the order that they appear in the book.



Part I. Answer all questions.

1. Use a contour integral to evaluate∫ 2π

0

dθ

(2 + cos(θ))2
.

SOLUTION: Set z = eiθ, so that (z + z−1)/2 = cos θ. Then dz/(iz) = dθ,
and

I =

∫ 2π

0

dθ

(2 + cos(θ))2
=

∫
C

dz

iz(2 + (z + z−1)/2)2
,

where C is the positively-oriented unit circle. Simplification gives

I =
4

i

∫
C

zdz

(z2 + 4z + 1)2
.

The discriminant of the quadratic is 16 − 4 > 0, so the roots are real; they
in fact are:

−4±
√

12

2
= −2±

√
3 = α±,

say. The root α+ is in the unit circle, so contributes by the residue theorem

I =
4

i
2πi Resz=α+

z

(z − α+)2(z − α−)2
= 8π

d

dz

z

(z − α−)2

∣∣∣∣
z=α+

= 8π
(z − α−)2 − 2z(z − α−)

(z − α−)4

∣∣∣∣
z=α+

= 8π
−(α+ + α−)

(α+ − α−)3

= 8π
4

(2
√

3)3
=

4π

33/2
.

2. Write z = x + iy and let R = {(x, y) : (x − 1)2 + y2 < 1, y > x}. Find a
biholomorphic map from R to the unit disk D = {(x, y) : x2 + y2 < 1}. You
may express your answer as a composition of explicitly given biholomorphic
maps.

SOLUTION: We first notice that the line y = x intersects the circle (x −
1)2 + y2 = 1 at z = 0 and z = 1 + i. Also notice that a linear fractional map



sends a generalized circle (including a straight line) to a generalized circle.
Now define

w = φ1(z) =
z

1− z
1+i

.

Since φ1(0) = 0, and φ1(1 + i) =∞, φ1 maps the boundary of R to two rays
originating from 0. Noting φ1(

1+i
2

) = 1 + i, φ1 maps the straight edge of R

to the ray {z = rei
π
4 : r > 0} and maps R into sector R1 = {z = reiθ : r >

0, π/4 < θ < π/2}(as the π
4

angle between the straight edge of R and its
circular arc is preserved by φ1). Now, define

w = φ2(z) = e−iπ/4z.

Then φ2 maps R1 to R2 = {z = reiθ : r > 0, 0 < θ < π/4}. Define
φ3(z) = z4. Then φ3 maps R2 to the upper-half plane R4 = {z = reiθ :
r > 0, 0 < θ < π}. Finally φ4 = z−i

z+i
maps R4 to the unit disk D. Hence

F = φ4 ◦ φ3 ◦ φ2 ◦ φ1 biholomorphically maps R to the unit disk D.

3. Let u(x, y) be a harmonic function on the unit disk D = {z : |z| < 1|};
specifically, we assume that u is twice continuously differentiable on D and
that

∂2u

∂x2
+
∂2u

∂y2
= 0,

where z = x+ iy.

(a) Show that f(z) =
∂u

∂x
− i∂u

∂y
is a holomorphic function on D.

(b) For any piecewise smooth curve γ ⊂ D connecting 0 to z ∈ D, define
F (z) =

∫
γ
f(z)dz. Prove that F is a well defined holomorphic function on

D.

(c) Show that Re(F (z)) = u(z)− u(0).

SOLUTION: (a) Because the real and imaginary parts of f(z) have con-
tinuous first partial derivatives, we may show that f(z) is a holomorphic
function by verifying that f(z) satisfies the Cauchy-Riemann equations: as
u is harmonic, we have

∂

∂x

(
∂u

∂x

)
=

∂

∂y

(
−∂u
∂y

)
; also

∂

∂y

(
∂u

∂x

)
= − ∂

∂x

(
−∂u
∂y

)
.



(b) Since f is holomorphic and D is simply connected, Cauchy’s theorem
applied in D implies that the line integral is independent of the choice of the
path so that F (z) is well defined.

(There is also a direct argument for Cauchy’s theorem in a disc without
having to deal with the topological notion of simply connectedness: using
line integrals along radii in D and Goursat’s theorem on triangles in D to
prove the existence of a holomorphic primitive G(z) of f(z) in D, namely,
G′(z) = f(z) for z ∈ D. Then for any piecewise smooth curve γ ⊂ D
connecting 0 to z ∈ D, G(γ(t)) is piecewise continuously differentiable in

t, with
d

dt
G(γ(t)) = G′(γ(t))γ′(t), so that

∫
γ
f(z)dz =

∫
G′(γ(t))γ′(t)dt =∫ d

dt
G(γ(t))dt = G(z)−G(0), which shows that

∫
γ
f(z)dz is independent of

the choice of path from 0 to z. Here is yet another, more direct approach:
since f is given in terms of u, we express

∫
γ
f(z)dz in terms of u as follows.∫

γ

f(z)dz =

∫
γ

(ux − iuy)(dx+ idy)

=

∫
γ

{(
uxdx+ uydy

)
+ i
(
− uydx+ uxdy

)}
where

∫
γ
uxdx + uydy =

∫
γ
∇u · ~dγ = u(γ(1)) − u(γ(0)) = u(z) − u(0) is

independent of the choice of γ, and
∫
γ

(
− uydx+ uxdy

)
is also independent

of the choice of γ, because the one form −uydx + uxdy is closed due to the
harmonicity of u: d

(
− uydx + uxdy

)
= (uxx + uyy)dx ∧ dy = 0, and the

integration is done along paths confined in the disc D; or in more elementary
language, the vector field (−uy, ux) is curl free in D. Green’s theorem then
implies that the integral of −uydx+uxdy along closed simple piecewise curves
in D is zero, which implies that

∫
γ1

(
− uydx+ uxdy

)
=
∫
γ2

(
− uydx+ uxdy

)
if γ1 and γ2 are two simple curves in D from 0 to z that do not intersect each
other. To allow more general curves, we define v(z) =

∫
[0 z]

(
−uydx+uxdy

)
,

where [0 z] is taken to be the radial path from 0 to z. Then Green’s theorem
implies that for h real, small, v(z + h)− v(z) =

∫
[z z+h]

−uydx, so vx = −uy,
and similarly vy = ux. So for any curve γ from 0 to z,

∫
γ

(
− uydx+ uxdy

)
=∫

γ
vxdx+ vydy = v(z)− v(0), which is independent of the choice of γ.)



To show that F is holomorphic we show that it has derivative f :

lim
ζ→0

F (z + ζ)− F (z)

ζ
− f(z) = lim

ζ→0

1

ζ

∫
γ′

(f(z′)− f(z)) dz′ = 0,

where γ′ is the straight line from z to z + ζ, and we have used∣∣∣∣ ∫
γ′

(f(z′)− f(z)) dz′
∣∣∣∣ ≤ max

0≤t≤1
|f(z + tζ)− f(z)||ζ|,

and the continuity of f at z.

(c) Re(F (z)) = Re
(∫

γ
(ux − iuy)(dx+ idy)

)
=
∫
γ
uxdx+ uydy

=
∫
γ
∇u · ~dγ = u(γ(1))− u(γ(0)) = u(z)− u(0).



Part II. Answer one of the two questions.
If you work on both questions, indicate clearly which one should be graded.

4. Let f(z) be a holomorphic function on the punctured disk

D0 = {z : 0 < |z| < 1}.

Let f(z) =
∞∑

n=−∞

anz
n be the Laurent expansion of f(z).

(a) Prove that for any 0 < r < 1,∫ 2π

0

|f(reiθ)|2dθ = 2π
∞∑

n=−∞

|an|2r2n.

[This is an instance of Parseval’s theorem, which you may not quote.]

(b) Prove that if
∫
D0
|f(z)|2dA <∞, then f(z) has a removable singular

point at 0. Here dA is the Euclidean area element in R2.

SOLUTION: (a) For any 0 < r < 1, f(z) =
∑∞

n=−∞ anr
neinθ is convergent

uniformly and absolutely on the circle Sr = {|z| = r}. Thus by the Cauchy
Multiplication Theorem we have

f(z) · f(z) =
∞∑

n=−∞

∑
k+l=n

akalr
k+lei(k−l)θ

with the series on the right hand side converging uniformly and absolutely

on Sr. Hence
∫ 2π

0
|f(reiθ)|2dθ = 2π

∑∞
n=−∞ |an|2r2n.

(b). For any negative integer n, since∫
D

|f(z)|2dA =

∫ 1

0

rdr

∫ 2π

0

|f(reiθ)|2dθ ≥ 2π

∫ 1

0

|an|2

r
dr,

and
∫ 1

0
1
r
dr =∞, this forces an = 0 for all such n, therefore f has a removable

singular point at 0.



5. Suppose f and g are holomorphic in a region containing the closed unit disc
D = {z : |z| ≤ 1}. Suppose that f has a simple zero at z = 0 and vanishes
nowhere else in D. Let

ft(z) = f(z) + tg(z).

Show that if t > 0 is sufficiently small, then

(a) ft(z) has a unique zero in D, and

(b) if zt is this zero, then the mapping t→ zt is continuous.

SOLUTION: For (a), since f vanishes only at z = 0 in D, and |f(z)| is
continuous on ∂D, we have min∂D|f | > 0. Thus, there exists m > 0 such
that |f(z)| ≥ m > 0 for all z ∈ ∂D. Then for t small enough, we have
|ft(z)− f(z)| = |t||g(z)| < m ≤ |f(z)| for all z ∈ ∂D, so Rouché’s Theorem
applies, giving ft the same number of zeros in D as f . Since f has a single
simple zero in D, this implies that ft also has a single simple zero in D.

For (b), let ε > 0 be given and t0 sufficiently small that ft0 has a unique
zero in D at zt0 . Claim: there is a δ > 0 so that, for all t with |t − t0| < δ,
we have |zt0 − zt| < ε. To show this, consider

N
(t0)
t =

1

2πi

∫
Ct0

f ′t(z)

ft(z)
dz,

where Ct0 is a circle of radius ε (small enough to remain in D) about zt0 . By

the argument principle, N
(t0)
t is the number of zeroes of ft inside Ct0 , and

clearly N
(t0)
t0 = 1, since zt0 is the unique zero of ft0 in all of D. Since |ft0| is

continuous and non-vanishing on Ct0 , which is compact, it is bounded below
by some m > 0. Likewise, |g| is bounded above, on all of D, by M , say.
Choose δ < m/M . Then for t sufficiently near t0, |t− t0| < δ, we get that

|ft| > |ft0| − |t− t0||g| ≥ m− δM > 0

is also bounded away from zero on Ct0 , so the integral makes sense. The

integrand is jointly continuous in (t, z) ∈ (t0 − δ, t0 + δ) × Ct0 , so N
(t0)
t

is continuous in t, hence constant (since it is integer valued). So N
(t0)
t =

N
(t0)
t0 = 1; that is, zt is within ε of t0, as claimed.

Another proof for (b) is via the Implicit Function Theorem. Set F (z, t) =
ft(z) = f(z) + tg(z). Then F (z, t) is continuously differentiable in z, with



F (0, 0) = 0, and Fz(0, 0) = f ′(0) 6= 0–this is because z = 0 is a simple zero
of f . Then the Implicit Function Theorem implies the existence of δ > 0
and r > 0, as well as a continuous map s : t ∈ (−δ, δ) 7→ z = s(t) ∈ Dr(0)
such that F (s(t), t) = 0 for all t ∈ (−δ, δ). The Implicit Function Theorem
also implies that for t ∈ (−δ, δ), z = s(t) is the only solution to F (z, t) = 0
in Dr(0), agreeing with the solution in D identified in part (a). The same
argument applies to any simple zero z0 of F (z0, t0).

End of Session 2
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Session 3. Real Variables and Elementary Point-Set Topology

The Qualifying Examination consists of three two-hour sessions. This is
the third session. The questions for this session are divided into two parts.

Answer all of the questions in Part I (numbered 1, 2, 3).

Answer one of the questions in Part II (numbered 4, 5).

If you work on both questions in Part II, state clearly which one should be
graded. No additional credit will be given for more than one of the questions
in Part II. If no choice between the two questions is indicated, then the first
optional question attempted in the examination book(s) will be the only one
graded. Only material in the examination book(s) will be graded,
and scratch paper will be discarded.

Before handing in your exam at the end of the session:

• Be sure your special exam ID code symbol is on each exam book that
you are submitting.

• Label the books at the top as “Book 1 of X”, “Book 2 of X”, etc., where
X is the total number of exam books that you are submitting.

• Within each book make sure that the work that you don’t want graded
is crossed out or clearly labeled to be ignored.

• At the top of each book, clearly list the numbers of those problems
appearing in the book and that you want to have graded. List them in
the order that they appear in the book.



Part I. Answer all questions.

1. Let X denote the set of all continuous real-valued functions f : [0, 1] → R.
For f, g ∈ X, define

d(f, g) = max
{
|f(x)− g(x)| : 0 ≤ x ≤ 1

}
.

a. Prove that d is a metric on X and that (X, d) is a complete metric
space.

b. Let 0 denote the function in X which is identically equal to zero, and
let B = {f ∈ X : d(f,0) ≤ 1}. Prove that B is not compact. HINT:
In a metric space, compactness is equivalent to sequential compactness.

SOLUTION: Let f, g ∈ X. Then the maximum

max
{
|f(x)− g(x)| : 0 ≤ x ≤ 1

}
exists because |f − g| is a continuous function on the compact interval [0, 1].
Furthermore, it is clear that

d(f, g) ≥ 0 , (1)

because all the numbers |f(x)− g(x)| are ≥ 0.
It is clear from the definition of d(f, g) that we have

d(g, f) = d(f, g) . (2)

Let f, g ∈ X be such that d(f, g) = 0. Then |f(x) − g(x)| ≤ d(f, g) = 0
for each x, so f(x) = g(x) for each x. Hence

d(f, g) = 0 =⇒ f = g . (3)

Finally, let f, g, h ∈ X. Let r = d(f, g), s = d(g, h). Then, for each x,
|f(x)−h(x)| = |f(x)−g(x)+g(x)−h(x)| ≤ |f(x)−g(x)|+|g(x)−h(x)| ≤ r+s.

Therefore max
{
|f(x)− h(x)| : 0 ≤ x ≤ 1

}
≤ r + s, so

d(f, h) ≤ d(f, g) + d(g, h) . (4)



Formulas (1), (2), (3) and (4) prove that X is a metric space.
To prove that X is complete, we assume that (fn)∞n=1 is a Cauchy sequence

with respect to the metric of X, and prove that fn → f as n→∞ for some
f ∈ X.

For each positive number ε, choose a positive integer N(ε) such that
d(fn, fm) < ε whenever n ≥ N(ε) and m ≥ N(ε).

Then, if x ∈ [0, 1], the inequalities |fn(x)− fm(x)| < ε hold for each n,m
such that n ≥ N(ε) and m ≥ N(ε), because d(fn, fm) < ε and |fn(x) −
fm(x)| ≤ d(fn, fm). It follows that the numerical sequence (fn(x))∞n=1 is a
Cauchy sequence. Hence the limit f(x) of this sequence exists.

Given ε, since the inequality |fm(x)−fn(x)| < ε holds for every m,n such
that m ≥ N(ε) and n ≥ N(ε), we can let n go to infinity and conclude that
|f(x)−fn(x)| ≤ ε for all n such that n ≥ N(ε) and all x. This clearly implies
that fn → f uniformly, and from this it follows that f is continuous. (Proof:

Fix x ∈ [0, 1]. Given a positive ε, pick n such that n ≥ N
(
ε
3

)
. Since fn is

continuous, we may pick a positive δ such that |fn(y)− fn(x)| < ε
3

whenever
|y − x| < δ. Then, if |y − x| < δ, we have

|f(y)− f(x)| ≤ |f(y)− fn(y)|+ |fn(y)− fn(x)|+ |fn(x)− f(x)|

≤ ε

3
+
ε

3
+
ε

3
≤ ε .

This proves the continuity of f .)
Since f is continuous, f belongs to X. Since |f(x)− fn(x)| ≤ ε for all n

such that n ≥ N(ε), it follows that d(f, fn) ≤ ε for all n such that n ≥ N(ε).
Hence the sequence (fn)∞n=1 converges to f in X, and this proves that X is
complete.

To prove that the closed unit ball B is not compact, it suffices by the
hint to exhibit a sequence (fn)∞n=1 of members of B that does not have a
convergent subsequence. Define fn(x) = xn, for x ∈ [0, 1] and n a positive
integer. Then fn ∈ X. If there was a subsequence (fnk)

∞
k=1 that converges

in X to an f ∈ X, then this subsequence would converge to f uniformly,
so it would also converge pointwise. But (fn)∞n=1 converges pointwise to the
function g given by g(x) = 0 if x < 1, g(1) = 1. So the subsequence (fnk)

∞
k=1

would also converge pointwise to g. Hence g = f , contradicting the fact that
g is discontinuous whereas f is continuous.

2. Let a, b be real numbers such that a < b, and let f : [a, b]→ R.



a. Define what it means for f to be “absolutely continuous on [a, b]”
(this is an ε-δ definition).

b. State a theorem relating the absolute continuity of such a function to
its differentiability.

c. Assume that the restriction f
∣∣
[ε,1]

is absolutely continuous for every

ε such that 0 < ε < 1, and that
∫ 1

0
x2|f ′(x)|pdx < ∞ for some real

number p such that p > 3. Prove that limx→0 f(x) exists and is finite.

(HINT: Prove that
∫ 1

0
|f ′(x)|dx <∞.)

SOLUTION: (a). f is absolutely continuous on [a, b] if for every ε > 0 there

is a δ > 0 such that if the finite sequence
(
(xk, yk)

)N
k=1

of pairwise disjoint
sub-intervals of [a, b] satisfies

∑
k(yk − xk) < δ then

∑
k |f(yk)− f(xk)| < ε.

(b). Theorem: A function f : [a, b] → R is absolutely continuous on
[a, b] if and only if it is differentiable almost everywhere, the derivative f ′

is Lebesgue integrable, and f(y) − f(x) =
∫ y
x
f ′(u)du for all x, y such that

a ≤ x ≤ y ≤ b.
(c). Assume that the conditions of Part c hold. Then f ′(x) exists for

almost every x ∈ [0, 1]. Furthermore, for each ε such that 0 < ε < 1, we have

f(1)− f(ε) =

∫ 1

ε

f ′(x)dx ,

so

f(ε) = f(1)−
∫ 1

ε

f ′(x)dx ,

If we can prove that f ′ is integrable on [0, 1], then it will follow that the limit
limx→0 f(x) exists and is finite, because, if f ′ ∈ L1([0, 1]), then

lim
x→0

f(x) = lim
x→0

(
f(1)−

∫ 1

x

f ′(u)du
)

= f(1)−
∫ 1

0

f ′(u)du .

So it suffices to prove that
∫ 1

0
|f ′(x)|dx <∞.

Now, if we let g(x) = x
2
p |f ′(x)|, h(x) = x−

2
p , we have

|f ′(x)| = g(x)h(x) ,



so by Hölder’s inequality∫ 1

0

|f ′(x)|dx =

∫ 1

0

g(x)h(x)dx

≤
(∫ 1

0

g(x)pdx
) 1
p
(∫ 1

0

h(x)qdx
) 1
q

=
(∫ 1

0

x2|f ′(x)|pdx
) 1
p
(∫ 1

0

x−
2q
p |dx

) 1
q
,

where q is the conjugate exponent of p, characterized by 1
p

+ 1
q

= 1. Since we

are assuming that
∫ 1

0
x2|f ′(x)|pdx <∞, it suffices to show that

∫ 1

0
x−

2q
p dx <

∞.
Since 1

p
+ 1

q
= 1, we have p

p
+ p

q
= p, i.e. p

q
= p − 1. Since p > 3,

it follows that p
q
> 2, so p

2q
> 1, and then 2q

p
< 1. Hence the function

[0, 1] 3 x 7→ x−
2q
p dx <∞ is integrable, so the integral

∫ 1

0
x−

2q
p dx is finite. As

explained in the previous paragraph, this proves our result.

3. Let n be a positive integer.

a. Define what it means for a subset S of Rn to be “connected”.

b. Let Ω be an open connected subset of Rn. Let f : Ω→ R be a function
such that

lim
ε→0

f(p+ εv)− f(p)

ε
= 0

for every p ∈ Ω and every v ∈ Rn. Prove that f is a constant. Make
sure that you use in this proof the definition of “connected” that you
gave in Part a.

SOLUTION: (a). A subset S of Rn is connected if it is not possible to express
S as the union of two nonempty subsets S1, S2 of S such that (a) S1∩S2 = ∅,
and (b) S1 and S2 are relatively open subsets of S. (A subset T of S is
relatively open in S if T = U ∩ S for some open subset U of Rn.)

(b). Suppose that Ω is an open connected subset of Rn. Let f be a
function that satisfies the condition of Part b.

If p, q are two points of Rn, the segment from p to q is the set

σp,q = {(1− t)p+ tq : 0 ≤ t ≤ 1} .

We prove that



(*) f is constant on every segment σp,q such that σp,q ⊆ Ω.

To prove (*), fix p and q, and define g(t) = f((1 − t)p + tq), for 0 ≤ t ≤ 1.
Then g is a function of one variable, defined on the interval [0, 1]. For each
t ∈ [0, 1], the limit

g′(t) = lim
h→0

g(t+ h)− g(t)

h

exists and is equal to zero. (Reason: if we let A = (1−t)p+tq and B = q−p,
then

g(t+ h)− g(t) = f((1− t− h)p+ (t+ h)q)− f((1− t)p+ tq)

= f(A+ hB)− f(A) ,

so limh→0
g(t+h)−g(t)

h
= limh→0

f(A+hB)−f(A)
h

= 0.) So g is a function of [0, 1]
that has a derivative equal to zero everywhere. Hence, by the Mean Value
Theorem for functions of one variable, g is a constant function. Clearly, this
implies that f is constant on the segment σp,q, and (*) is proved.

Now, if D is any disc which is contained in Ω, the function f must be
constant on D, because, if p is the center of D, and q is any point of D, the
segment σp,q is contained in D, so f is constant on σp,q, so f(q) = f(p).

We now prove, finally, that f is constant on Ω.
For each real number c, let Sc = {p ∈ Ω : f(p) = c}. Then we have

proved that every set Sc is open. Pick a point p0 of Ω, and let c0 = f(p0).
Let A = Sc0 , B =

⋃
c 6=c0 Sc. Then both A and B are open, and obviously

A ∩ B = ∅ and A ∪ B = Ω. Furthermore, A is nonempty, because p0 ∈ A.
Since Ω is connected, B must be empty, so Ω = A, which means that f is
constant on Ω.

A different definition for connectedness may be used, but the argument
for part (b) must use the same definition for connectedness.

Part II. Answer one of the two questions.
If you work on both questions, indicate clearly which one should be graded.

4. Let f : R→ R be a measurable function such that∫ ∞
−∞

(1 + |x|)|f(x)|dx <∞ .



Define

g(y) =

∫ ∞
−∞

f(x) cos(xy)dx .

1. Prove that g is continuously differentiable (that is, prove that the

derivative g′(y) = limh→0
g(y+h)−g(y)

h
exists for every y ∈ R, and is a

continuous function of y).

2. Write a formula for g′, as an integral.

SOLUTION: Fix a real number y. If h ∈ R and h 6= 0, we have

g(y + h)− g(y) =

∫ ∞
−∞

f(x)
(

cos(x(y + h))− cos(xy)
)
dx

so
g(y + h)− g(y)

h
=

∫ ∞
−∞

kh(x)dx ,

where

kh(x) = f(x)
cos(x(y + h))− cos(xy)

h
.

For each fixed x the limit

lim
h→0

(
f(x)

cos(x(y + h))− cos(xy)

h

)
is the derivative of the function R 3 u 7→ f(x) cos(xu) at u = y, which is equal

to −xf(x) sinxy. So, if we let k̂(x) = −xf(x) sinxy, the functions kh con-

verge pointwise to k̂ as h→ 0. The assumption that
∫∞
−∞(1 + |x|)|f(x)|dx <

∞ implies that k̂ is integrable. We can apply Lebesgue dominated conver-
gence theorem to conclude

g′(y) = lim
h→0

g(y + h)− g(y)

h
= −

∫ ∞
−∞

xf(x) sin(xy)dx . (5)

if we find an integrable function κ : R → R such that |kh(x)| ≤ κ(x) for
all x ∈ R and all small h. (Precisely: Suppose such a function κ exists. To

prove that limh→0

∫∞
−∞ kh(x)dx =

∫∞
−∞ k̂(x)dx, it suffices to show that

lim
n→∞

∫ ∞
−∞

khn(x)dx =

∫ ∞
−∞

k̂(x)dx (6)



for every sequence (hn)∞n=1 of nonzero real numbers that converges to 0 as

n→∞. If (hn)∞n=1 is such a sequence, then limn→∞ khn(x) = k̂(x) for every
x, and in addition |khn(x)| ≤ κ(x) for every x and every n, so the dominated
convergence theorem applies and we can conclude that (6) holds.)

For each fixed x, we have

d

du
cos(xu) = −x sin(xu) .

It then follows from the Mean Value Theorem that

cos(x(y + h))− cos(xy) = −x sin(xc)h for some c ∈ R .

Therefore ∣∣∣∣∣cos(x(y + h))− cos(xy)

h

∣∣∣∣∣ ≤ |x| ,
so |kh(x)| ≤ |xf(x)| for all x and all h, Hence, if we define κ by letting
κ(x) = |xf(x)|, we have shown that |kh(x)| ≤ κ(x) for all x and all h, Since
we are assuming that κ is integrable, Formula (5) is now rigorously justified.

Finally, it follows clearly from (5) that the derivative g′ is continuous. In-
deed: if (yn)∞n=1 is a sequence of real numbers that converges to a limit y ∈ R,
then the functions R 3 x 7→ xf(x) sin(xyn) converge pointwise to the function
R 3 x 7→ xf(x) sin(xy), and are uniformly dominated by the integrable func-
tion κ. So, by the dominated convergence theorem, limn→∞ g

′(yn) = g′(y).

5. Let T be a real number such that T > 0. Let f : (0, T )→ R be a Lebesgue
integrable function. (Here (0, T ) is the open interval {x ∈ R : 0 < x < T}.)
Define a function g : (0, T )→ R by letting

g(x) =

∫ T

x

f(t)

t
dt .

Prove that g is integrable on (0, T ) and
∫ T
0
g(x)dx =

∫ T
0
f(x)dx.

HINTS: (a) You may want to consider first the case in which f is nonnegative.
(b) Use the Fubini-Tonelli theorem.)

SOLUTION: It suffices to assume that f is nonnegative. (Reason: Suppose
the conclusion is true for nonnegative f . Let f : (0, T )→ R be an arbitrary
integrable function. Then we can write f = f+−f−, with f+, f− nonnegative



and integrable. If we let g+(x) =
∫ T
x

f+(t)
t
dt and g−(x) =

∫ T
x

f−(t)
t
dt, then g =

g+−g−, and g+, g− are both integrable by our assumption, so g is integrable.

Furthermore, our assumption, also implies that
∫ T
0
g+(x)dx =

∫ T
0
f+(x)dx

and
∫ T
0
g−(x)dx =

∫ T
0
f−(x)dx. So

∫ T
0
g(x)dx =

∫ T
0
f(x)dx.)

Assume now that f is nonnegative, so g is nonnegative as well. Fur-
thermore, g is clearly measurable. (Actually, g is continuous on the interval
(0, T ].) So, if we prove that∫ T

0

g(x)dx =

∫ T

0

f(x)dx , (7)

then it will follow that
∫ T
0
g(x)dx < ∞ (because we are assuming that f is

integrable, so
∫ T
0
f(x)dx <∞), and this implies that g is integrable as well.

For 0 ≤ x ≤ T , 0 ≤ t ≤ T , define

h(x, t) =

{
f(t)
t

if x < t
0 if x ≥ t .

Then h is a nonnegative real-valued measurable function on the product
P = [0, T ]× [0, T ]. So, by the Fubini-Tonelli theorem, the double integral

I =

∫∫
P

h dm2

(where m2 is 2-dimensional Lebesgue measure) and the two iterated integrals

I1 =

∫ T

0

(∫ T

0

h(x, t)dt

)
dx,

I2 =

∫ T

0

(∫ T

0

h(x, t)dx

)
dt

are equal. So in particular I1 = I2.
Now, we have, for each x,∫ T

0

h(x, t)dt =

∫ T

x

f(t)

t
dt

= g(x) .



So I1 =
∫ T
0
g(x)dx.

On the other hand, we have, for each t such that t > 0,∫ T

0

h(x, t)dx =

∫ t

0

f(t)

t
dx

= t · f(t)

t
= f(t) ,

so I2 =
∫ T
0
f(t)dt.

Since I1 = I2, (7) follows, and our proof is complete.
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