Rutgers - Graduate Program in Mathematics Written Qualifying Examination

Fall 1995

This exam will be given over two days, in two three hour sessions. Each session will consist of 3 required questions and a choice of 3 out of 6 remaining questions. The basic idea is to ensure that all students at least attempt a range of questions, but one area of weakness should not be overly magnified. First Day – Part I: Answer each of the following three questions.

1. Let $X = \mathbb{R}$ and let $\tau = \{G \subset X | X \setminus G \text{ is countable}\} \cup \{\emptyset\}$. Show

i) τ is a topology on X;

ii) in the topological space (X, τ) the collection \mathcal{U}_0 of neighborhoods of 0 does not have a countable base.

2. Use contour integration to compute

$$\int_0^\infty \frac{dx}{x^4 + 1}.$$

3. Suppose that

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Find a 3 \times 3 orthogonal matrix U such that $U^{-1}AU$ is diagonal.

First Day – Part II: Answer three out of the following six questions.

- **4.** a) How many Sylow 5-subgroups does the alternating group A_5 have?
- b) How many Sylow 5-subgroups does the alternating group A_6 have?
- c) How many Sylow 5-subgroups does a simple group of order 360 have? (<u>Hint</u>: use part b).)
- 5. Let {f_n} and {g_n} be sequences of measurable functions on ℝ, and let p > 1. Assume
 i) each f_n is in L_p and f_n → f in L_p;
 ii) g_n → g a.e.;
 iii) |g_n| ≤ M < ∞ for each n.

Show that $g_n f_n \longrightarrow gf$ in L_p .

6. Consider the topology on the set of integers \mathbb{Z} for which $\{n + 7^k \mathbb{Z} | k \in \mathbb{Z}\}$ is a basis for the neighborhoods of $n \in \mathbb{Z}$.

- i) Show that this is a Hausdorff topology;
- ii) Show there is a sequence $\{n_j\}$ in \mathbb{Z} such that $(n_j)^2 \longrightarrow 2$ in this topology.

7. Consider the spiral S in the plane which in polar coordinates has the equation $r = \theta$ for $\theta \ge 0$. Let $G = \mathbb{C} \setminus S$. Show there is a holomorphic function $L : G \longrightarrow \mathbb{C}$ such that $e^{L(z)} = z^2$ for all $z \in G$.

8. Let \mathbb{Z}_2 be the field of two elements. Consider the matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

over \mathbb{Z}_2 .

a) Show that the characteristic polynomial of A factors as a product of linear polynomials over \mathbb{Z}_2 .

b) Find a non-singular matrix P over \mathbb{Z}_2 so that $P^{-1}AP$ is in Jordan form.

9. Let $\mathbf{v}(x,t)$ be a C^{∞} vector field and $\rho(x,t)$ a C^{∞} real-valued function defined for $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ and $t \in \mathbb{R}$. Assume that for any ball $B \subset \mathbb{R}^3$

$$\frac{d}{dt} \iiint_B \rho dx = - \iint_{\partial B} \rho \mathbf{v} \cdot \mathbf{n} dA$$

holds for all t where **n** is the exterior unit normal on ∂B and dA is the element of surface area. Show that

$$\frac{d\rho}{dt} + \nabla \cdot (\rho \mathbf{v}) = 0$$

for all (x, t).

Second Day – Part I: Answer each of the following three questions.

- **1.** Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Assume that $f(x) \longrightarrow L$ as $x \longrightarrow \infty$.
- a) Show that if $\lim_{x\to\infty} f'(x)$ exists then $\lim_{x\to\infty} f'(x) = 0$.
- b) Is a) true if " $\lim_{x\to\infty} f'(x)$ exists" is replaced by "f'(x) is bounded"?

2. For a ring R let $M_n(R)$ denote the ring of $n \times n$ matrices with entries in r. Prove that if R is a ring with multiplicative identity 1, then every two-sided ideal of $M_n(R)$ is of the form $M_n(I)$, where I is an ideal of R.

3. Let *m* be the Lebesgue measure on \mathbb{R} . Let $A \subset \mathbb{R}$ be a measurable set such that there exists a number *b* with 0 < b < 1 and

$$m(A \cap I) < b\,m(I)$$

for all open intervals I. Show that m(A) = 0.

Second Day – Part II: Answer three of the following six questions.

4. Let $\{f_n\}$ be a sequence of Lebesgue measurable functions on the interval (0,1) such that

i)
$$\sup \int_0^1 |f_n| dx < \infty$$

ii) $f_n \longrightarrow 0$ in measure.

Show that

$$\int_0^1 \sqrt{|f_n|} \, dx \longrightarrow 0.$$

5. Let (X, τ) be a compact metric space. Prove that if $\{U_1, U_2, \ldots, U_k\}$ is an open cover of X, then there exists a closed cover $\{C_1, C_2, \ldots, C_k\}$ with $C_i \subset U_i$ for each i.

6. Let $Q = \{z \in \mathbb{C} | \text{Re } z > 0, \text{ Im } z > 0\}$ and let $E = \{z \in \mathbb{C} | |z| < 1\}$. Give explicitly a holomorphic function $f : Q \longrightarrow E$ which is one-to-one and onto.

7. Let \mathbb{J} denote the set of Gaussian integers; that is,

$$\mathbb{J} = \{ \alpha + \beta i | \alpha, \beta \in \mathbb{Z} \}.$$

Let u and v be nonzero Gaussian integers, and let $\bar{\gamma}$ denote the conjugate of the complex number γ .

a) Show that there exist Gaussian integers x, y such that $u\bar{v} = xv\bar{v} + y$ and $y\bar{y} < (v\bar{v})^2$.

b) Show that $\mathbb J$ is a Euclidean domain whose degree function is complex absolute value squared.

c) Find the greatest common divisor (in \mathbb{J}) of the two Gaussian integers 7-6i and 7-11i.

8. For what values of λ will the solution x(t) to

$$x'(t) = x^{3}(t) + \lambda x^{2}(t)$$
$$x(0) = 1$$

exist for all $t \ge 0$ and be uniformly bounded. Justify your answer fully.

- **9.** Find two 4×4 matrices A and B such that:
 - i) A and B have the same characteristic polynomial;
 - ii) A and B have the same minimal polynomial;
 - iii) A and B are not similar.