Rutgers University - Graduate Program in Mathematics

Written Qualifying Examination

Fall 1999

Day 1

This exam will be given in two three-hour sessions, one today and one tomorrow. At each session the exam will have two parts. Answer all three of the questions on Part I and three of the six questions on Part II. If you work on more than three questions on Part II, indicate clearly which three should be graded.

First Day—Part I: Answer each of the following three questions.

1. Let $p(x)$ and $q(x)$ be relatively prime polynomials with real coefficients, of strictly positive degrees d_1 and d_2 , respectively. Let $r(x)$ be a polynomial of degree less than $d_1 + d_2$. Show that the rational function $\frac{r(x)}{p(x)q(x)}$ has a partial fraction decomposition of the form

$$
\frac{a(x)}{p(x)} + \frac{b(x)}{q(x)},
$$

where $a(x)$ and $b(x)$ are polynomials of degrees less than d_1 and d_2 , respectively.

2. A function $f : \mathbb{C} \to \mathbb{C}$ is said to satisfy a *(global) Lipschitz condition* if there exists a constant K for which $|f(z) - f(w)| \leq K|z - w|$ for all $z, w \in \mathbb{C}$. Show that an entire (i.e., holomorphic) function that satisfies a global Lipschitz condition must have the form $f(z) = az + b$ for some complex constants a and b.

3. Let $U \subset \mathbb{R}$ be a (possibly infinite) open interval and $f : U \to \mathbb{R}$ a differentiable function whose derivative is nondecreasing: $\xi_1 < \xi_2 \Rightarrow f'(\xi_1) \le f'(\xi_2)$. Prove carefully that for every $[a,b] \subset U$,

(a) $\max\{f(x) | a \le x \le b\} = \max\{f(a), f(b)\};$

(b) If $\ell(x)$ is the linear function such that $\ell(a) = f(a)$ and $\ell(b) = f(b)$, then $f(x) \leq \ell(x)$ holds for all $a \leq x \leq b$.

First Day—Part II: Answer three of the following six questions. If you work on more than three questions, indicate clearly which three should be graded.

4. Suppose that the finite group G acts on the finite set Ω . Let $n = |G|$ and $m = |\Omega|$. Assume that G has exactly r orbits on Ω , and that their cardinalities are m_1,\ldots,m_r . An element $\alpha \in \Omega$ is chosen randomly, and independently of this an element $q \in G$ is chosen randomly, with all choices equally likely in each case. Determine, with a proof, the probability that $q\alpha = \alpha$.

5. Suppose that g is a bounded measurable function defined on **R**, and that for $z \in \mathbb{C}$ with $\text{Re } z > 0$, $f(z)$ is defined by

$$
f(z) = \int_{-\infty}^{\infty} \frac{g(y)}{1 + zy^2} \, dy.
$$

Prove that f is holomorphic in the right half plane $\{z \in \mathbb{C} \mid \text{Re } z > 0\}.$

6. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = \frac{x^2y}{x^2 + y^2}$ for $(x, y) \neq (0, 0), f(0, 0) = 0$.

(a) Prove that f is continuous on \mathbb{R}^2 and that $(D_1 f)(x, y) \equiv \frac{\partial f}{\partial x}(x, y)$ and $(D_2 f)(x, y) \equiv \frac{\partial f}{\partial y}(x, y)$ exist for all $(x, y) \in \mathbb{R}^2$ and are bounded on \mathbb{R}^2 .

(b) Prove that for every unit vector $\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2$, the directional derivative $(D_{\mathbf{u}}f)(0,0) \equiv \lim_{h \to 0}$ $t\rightarrow 0$ $f(t\mathbf{u}) - f(0,0)$ t exists.

(c) Prove that
$$
f
$$
 is not differentiable at $(0,0)$.

7. Define the *exponential* e^A of a square matrix A with complex entries by the standard power series:

$$
e^{A} = I + A + \frac{1}{2!}A^{2} + \frac{1}{3!}A^{3} + \cdots
$$

Show:

(a) For any such matrix A , this infinite series converges.

(b) If A and B are similar matrices, then e^A and e^B are similar matrices.

(c) $\det(e^A) = e^{\text{tr}(A)}$. (Here *tr* denotes the trace.)

8. Suppose that $f(z)$ is holomorphic in the unit disc $D = \{ z \in \mathbb{C} \mid |z| < 1 \}$, that $f(0) = 0$, and that $\text{Re}[f(z)] < 1$ for $z \in D$. Show that

$$
|f(z)| \le \frac{2|z|}{1-|z|}
$$

for all $z \in D$.

9. Evaluate the following limits rigorously, justifying your answers with the aid of appropriate theorems.

(a)

$$
\lim_{n \to \infty} \int_0^\infty \left(1 + \frac{x}{n}\right)^{-n} \cos\left(\frac{x}{n}\right) dx.
$$
\n(Hint: Prove that $\left(1 + \frac{x}{n}\right)^{-n} \le \left(1 + x + \frac{x^2}{4}\right)^{-1}$ for $x \ge 0$ and $n \ge 2$.)\n(b)\n
$$
\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n}\right)^n e^{x/2} dx.
$$

(Hint: Prove that $\left(1 - \frac{x}{n}\right)$ $\big)^n \leq e^{-x}$ for $n \geq 1$ and $0 \leq x \leq n$.

Rutgers University - Graduate Program in Mathematics

Written Qualifying Examination

Fall 1999

Day 2

This is the second of two three-hour exam sessions; you should have taken the first session yesterday. The exam has two parts. Answer all three of the questions on Part I and three of the six questions on Part II. If you work on more than three questions on Part II, indicate clearly which three should be graded.

Second Day—Part I: Answer each of the following three questions.

1. This problem concerns Lebesgue integration of functions from **R** to **R**. For such functions, a trivial form of Hölder's inequality says that if $f \in L^{\infty}(\mathbb{R})$ and $g \in L^{1}(\mathbb{R})$ then

$$
\left| \int_{\mathbb{R}} fg \right| \le \|f\|_{\infty} \|g\|_{1}.
$$
\n
$$
(*)
$$

(a) Prove that for each $g \in L^1(\mathbb{R})$ there is an $f \in L^{\infty}(\mathbb{R})$ with $||f||_{\infty} = 1$ such that equality holds in (∗).

(b) Prove that for each $f \in L^{\infty}(\mathbb{R})$ and each $\epsilon > 0$ there is a $g \in L^{1}(\mathbb{R})$ with $||g||_{1} = 1$ such that

$$
\left| \int_{\mathbb{R}} fg \right| \geq \|f\|_{\infty} - \epsilon.
$$

2. Let $P(z)$ be a polynomial in z of degree two or higher. Let \mathcal{C}_R be the positively oriented semicircle of radius R , with center at the origin, in the upper half plane. Show that

$$
\lim_{R \to \infty} \int_{\mathcal{C}_R} \frac{e^{ikz}}{P(z)} dz = \begin{cases} 0, & \text{if } k \ge 0, \\ 2\pi i \sum_{n=1}^m \text{Res}_{\zeta_n} \frac{e^{ikz}}{P(z)}, & \text{if } k < 0, \end{cases}
$$

where ζ_1,\ldots,ζ_m are the distinct zeros of $P(z)$ and $\text{Res}_{\zeta} f(z)$ is the residue of $f(z)$ at ζ .

3. Let G be a group and let H be the subgroup of G generated by the set $\{x^2 \mid x \in G\}$ of all squares in G.

- (a) Show that H is a normal subgroup of G .
- (b) Show that G/H is abelian.
- (c) Let a, b, c , and d be elements of G . Using (b), deduce that

abcdcccbadacdcad

is an element of H.

Second Day—Part II: Answer three of the following six questions. If you work on more than three questions, indicate clearly which three should be graded.

4. A function $f : \mathbb{R} \to \mathbb{R}$ is called 1-periodic if $f(x+1) = f(x)$ for all $x \in \mathbb{R}$. Let V be the vector space of all 1-periodic C^{∞} functions $f : \mathbb{R} \to \mathbb{R}$, let $h : \mathbb{R} \to \mathbb{R}$ be a fixed 1-periodic C^{∞} function, and consider the linear differential operator $T: V \to V$ defined by

$$
(Tf)(x) = f''(x) + h(x)f(x).
$$

Show that any finite-dimensional T -invariant subspace of V is the span of certain onedimensional T-invariant subspaces. (Hint: use the inner product $(f, g) = \int_0^1 f(x)g(x) dx$.) Recall that a subspace W of V is T-invariant if and only if $T(W) \subseteq W$.

5. Suppose that
$$
a_k = \int_0^1 \frac{\cos k\pi x}{\sqrt{x}} dx
$$
 for $k = 0, 1, 2...$ Show that $\sum_{k=0}^\infty a_k^2 = \infty$.

6. Let $P(z)$ be a polynomial, with $P(0) \neq 0$, whose complex zeros, enumerated according to multiplicity, are $\{a_k\}_{k=1}^n$. Find expressions for the sums $\sum_{k=1}^n$ $k=1$ 1 a_k and $\sum_{n=1}^n$ $k=1$ 1 a_k^2 in terms of $P(0)$, $P'(0)$, and $P''(0)$. (Hint: Begin by finding an expression for $\sum_{n=1}^{n}$ $k=1$ 1 $z - a_k$.)

7. A metric space is called separable if it contains a countable dense set. Let A be a subset of a separable metric space (X, d) . Prove that A (with the metric inherited from X) is separable.

8. This problem concerns polynomials and rational functions in two variables, t and u, over the complex field C. Suppose that

$$
f(t, u) = \sum_{i=0}^{n} \alpha_i(u)t^i
$$
 and $g(t, u) = \sum_{j=0}^{m} \beta_j(u)t^j$,

where all α_i and β_j are rational functions of u $(\alpha_i, \beta_j \in \mathbb{C}(u))$ and $\alpha_n(u) = \beta_m(u) = 1$. Show that

$$
fg \in \mathbb{C}[t, u] \iff f \in \mathbb{C}[t, u] \text{ and } g \in \mathbb{C}[t, u].
$$

9. Let $\theta : [0, 1] \rightarrow [0, 1]$ be a strictly increasing, continuously differentiable function with $\theta(0) = 0$ and $\theta(1) = 1$. In this problem we write $V[F; a, b]$ for the total variation of the function F over the interval $[a, b]$.

(a) Let $f : [0,1] \to [0,1]$ be a function of bounded variation and let $g = \theta \circ f \circ \theta^{-1}$. Show, directly from the definition of total variation, that there exists a constant K depending only on θ such that

$$
V[g; 0, 1] \leq K V[f; 0, 1].
$$

(b) Determine, with a proof, the constant K in (a) which is optimal in the sense that for any any $K' < K$ there exists an f with $V[g;0,1] > K' V[f;0,1].$