Rutgers University - Graduate Program in Mathematics Written Qualifying Examination

Spring 1998

This exam will be given over two days, in two three hour sessions. Each session will consist of 3 required questions and a choice of 3 out of 6 remaining questions. The basic idea is to ensure that all students at least attempt a range of questions, but one area of weakness should not be overly magnified.

First Day – Part I: Answer each of the following three questions.

1. Let A be an $n \times n$ -matrix over an algebraically closed field k. Let P(x) be a polynomial over k. Show that $\lambda \in k$ is an eigenvalue of P(A) if and only if $\lambda = P(\gamma)$ where γ is an eigenvalue of A.

2. Let *D* be an open connected domain in the complex plane \mathbb{C} and f(z) an analytic function defined on *D*. Assume that there is a smooth curve Γ in \mathbb{C} such that $f(D) \subseteq \Gamma$. Prove that f is constant.

3. Let f be a real valued function on an interval $I \subseteq \mathbb{R}$ such that f'(x) exists for all $x \in I$. Show, that f' has the intermediate value property, i.e., for all $a, b \in I$ and $c \in \mathbb{R}$ with f'(a) < c < f'(b) there is ξ in the interval bounded by a and b such that $f'(\xi) = c$. First Day – Part II: Answer three out of the following six questions.

4. Show that there is no simple group of order 224.

5. Let *E* be a Lebesgue measurable subset of \mathbb{R} with $0 < m(E) < \infty$. Let $\chi_E(x)$ denote the characteristic function of *E*.

a) Prove that

$$\varphi(x) = \int_{\mathbb{R}} \chi_{_E}(y) \chi_{_E}(x+y) dy.$$

is a continuous function on \mathbb{R} . [*Hint:* Observe that $\varphi(x)$ is an L^2 -scalar product.] b) Let $F = \{x - y \mid x, y \in E\}$. Prove that there exists $\delta > 0$ such that $(-\delta, \delta) \subseteq F$.

6. Compute

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx$$

for a > 0. Hint: $\cos x = Re(e^{ix})$.

7. Let X be a metric space. A point $x \in X$ is called isolated if the set $\{x\}$ is open. Show that the following two properties are equivalent:

- a) Every subset of X is open or closed.
- b) X contains at most one non-isolated point.

8. Let f be an analytic mapping of the open unit disk D into itself. Suppose there are two points $z_1 \neq z_2 \in D$ with $f(z_1) = z_1$ and $f(z_2) = z_2$. Show that f is the identity map.

9. Let A and B be real symmetric $n \times n$ -matrices. Assume that A is positive definite. Show that there is an invertible real $n \times n$ -matrix S such that both SAS^t and SBS^t are diagonal. (Here S^t is the transpose of S.) **1.** Let f(x) be a continuous function on \mathbb{R} with compact support and $\alpha > 1$. Show that

$$g_N(x) = \sum_{n=0}^{N} \frac{f(x-n)}{(n+1)^{\alpha}}$$

converges in L^2 as $N \to \infty$.

2. For N a positive integer, determine

$$\int_{|z|=\pi(N+\frac{1}{2})} e^{iz} \cot(z) \, dz.$$

- **3.** Let A be the ring of C^{∞} -functions on \mathbb{R} .
 - a) Show that

$$P := \{ f \in A \mid \frac{d^k f}{dx^k}(0) = 0 \text{ for all } k \ge 0 \}$$

is a prime ideal of A. b) Show that

 $Q := \{ f \in A \mid \text{there is a neighborhood } U \text{ of } 0 \text{ with } f|_U \equiv 0 \}$

is an ideal but not a prime ideal of A.

Second Day – Part II: Answer <u>three</u> of the following six questions.

4. Let P be the group of all permutations of Z. For $\varphi \in P$ define its support as $Supp(\varphi) := \{x \in \mathbb{Z} \mid \varphi(x) \neq x\}$. Let A_{∞} be the set of all $\varphi \in P$ with $S := Supp(\varphi)$ finite and such that $\varphi|_S$ is an even permutation of S.

- a) Show that A_{∞} is a subgroup of P.
- b) Show that A_{∞} is a simple group.

5. A sequence of L^2 -functions $\{f_n\}$ on \mathbb{R} is said to converge weakly to $f \in L^2$ if for every $g \in L^2$

$$\int f_n g \longrightarrow \int fg \quad \text{for } n \to \infty.$$

Give an example (with proof) of a sequence of functions which converges weakly to 0 but does not converge to 0 in the L^2 -norm.

- **6.** Let S_n be the symmetric group on n letters.
 - a) Show: an automorphism of S_n is inner if and only if it maps transpositions to transpositions.
 - b) Show (assuming part a): every automorphism of S_7 is inner.

7. Let f and g be functions which are holomorphic in a neighborhood of the closed unit disk $|z| \leq 1$. Assume |g(z)| < |f(z)| for all z with |z| = 1. Prove that f and f + g have the same number of zeroes (counted with multiplicities) in the closed unit disk. [Hint: consider f + tg for $0 \leq t \leq 1$.]

8. Let f(z) be an analytic function on \mathbb{C} such that there exists a constant C > 0 and an integer $k \ge 0$ with

 $|f(z)| \le C(1+|z|)^k$

for all $z \in \mathbb{C}$. Prove that f is a polynomial in z.

9. Let f be a non-negative measurable function on the interval I = [0, 1] such that $\int_I fg < \infty$ for every non-negative measurable function g on I with $\int_I g < \infty$. Show that there is a constant M > 0 with f < M almost everywhere.